NOTE ON MATH 4010: FUNCTIONAL ANALYSIS

CHI-WAI LEUNG

Throughout this note, all spaces X,Y,.. are normed spaces over the field K = R or C. Let
Bx :={x € X : ||z]| < 1} and Sx := {z € X : ||z|]| = 1} denote the closed unit ball and the unit
sphere of X respectively.

1. CLASSICAL NORMED SPACES

Proposition 1.1. Let X be a normed space. Then the following assertions are equivalent.

(i) X is a Banach space.

(ii) If a series > .7, @, is absolutely convergent in X, i.e., > o" ||lzn| < oo, implies that the

series 220:1 T, converges in the norm.

Proof. (i) = (i) is obvious.
Now suppose that Part (ii) holds. Let (y,) be a Cauchy sequence in X. It suffices to show that
(yn) has a convergent subsequence. In fact, by the definition of a Cauchy sequence, there is a
subsequence (yy, ) such that ||y,, ,, — yn, || < 2% for all k =1,2.... So by the assumption, the series

> he1(Unyy1 — Yny,) converges in the norm and hence, the sequence (y,, ) is convergent in X. The
proof is finished. O

Throughout the note, we write a sequence of numbers as a function z : {1,2,...} — K.
The following examples are important classes in the study of functional analysis.

Example 1.2. Put
co :={(z(2)) : (i) € K, lim|z(¢)] = 0} and £ := {(z(7)) : z(i) € K, sgpx(i) < 00}

Then co is a subspace of £>°. The sup-norm || - |loc on €% is defined by ||z|| = sup; |z(i)| for
x € L. Then € is a Banach space and (co,| - ||oc) is a closed subspace of £>° (Check !) and

hence cq is also a Banach space too.
Let

coo := {(z(2)) : there are only finitly many x(i)’s are non-zero}.

Also, cop is endowed with the sup-norm defined above. Then cyy is not a Banach space (Why?)
but it is dense in cy, that is, coy = co (Check!).

Example 1.3. For 1 <p < oco. Put

= {(x(i) : 2(i) €K, Y |2(i)|P < oo}

i=1
° 1
Also, (P is equipped with the norm |z, := (Z |x(2)|P)» for x € ¢P. Then (P becomes a Banach

i=1
space under the norm || - ||,.

Date: December 19, 2018.



2 CHI-WAI LEUNG

Example 1.4. Let X be a locally compact Hausdorff space, for example, K. Let Cy(X) be the space
of all continuous K-valued functions f on X which are vanish at infinity, that is, for every e > 0,
there is a compact subset D of X such that |f(z)| < e for all z € X \ D. Now Cy(X) is endowed
with the sup-norm, that is,

[flloc = sup [f(z)]
zeX

for every f € Co(X). Then Cy(X) is a Banach space. (Try to prove this fact for the case
X =R. Just use the knowledge from MATH 2060 !!!)

2. FINITE DIMENSIONAL NORMED SPACES

We say that two norms || - || and || - ||" on a vector space X are equivalent, write || - || ~ || - ||, if
there are positive numbers ¢; and ¢y such that ¢1|| - | < || - ]|/ < e - || on X.
Example 2.1. Consider the norms || - ||1 and || - ||oo on £1. We are going to show that || - ||y and
|  lloo are not equivalent. In fact, if we put x,(i) := (1,1/2,...,1/n,0,0,....) for n,i =1,2.... Then
x, € LY for all n. Notice that (x,,) is a Cauchy sequence with respect to the norm || - ||oo but it is
not a Cauchy sequence with respect to the norm || -||1. Hence || - ||1 = || - |0 on £1.

Proposition 2.2. All norms on a finite dimensional vector space are equivalent.

Proof. Let X be a finite dimensional vector space and let {eq,...,e,} be a vector base of X. For

each © = Y I | ase; for oy € K, define ||z]jp = max!"; |a;]. Then | -||o is a norm X. The result is

obtained by showing that all norms || - || on X are equivalent to || - ||o.

Notice that for each z =" | ae; € X, we have ||z]| < ( Z lles|D]|z|lo- It remains to find ¢ > 0
1<i<n

such that c||-|lo < ||-||. In fact, let Sx :={z € X : ||z|lo = 1} be the unit ’sphere of X with respect

to the norm || - ||o. Notice that by using the Weierstrass Theorem on K, we see that Sy is compact

with respect to the norm || - [[o.

Define a real-valued function f on the unit sphere Sx of X by
fizeSx—|x|.

Notice that f > 0 and f is continuous with respect to the norm || - || since we have [|z| <
( Z lleil)]lz]jo for all z € X. Hence, there is ¢ > 0 such that f(x) > ¢ > 0 for all x € Sx. This
1<i<n

gives ||z|| > ¢||z||p for all z € X as desired. The proof is finished. O

Corollary 2.3. We have the following assertions.

(i) All finite dimensional normed spaces are Banach spaces. Consequently, any finite dimen-
stonal subspace of a normed space must be closed.
(ii) The closed unit ball of any finite dimensional normed space is compact.

Proof. Let (X, ]| -||) be a finite dimensional normed space. With the notation as in the proof of
Proposition 2.2 above, we see that || - || must be equivalent to the norm || - [|o. It is clear that X is
complete with respect to the norm || - || and so is complete in the original norm || - ||. The Part (7)
follows.

For Part (i7), it is clear that the compactness of the closed unit ball of X is equivalent to saying
that any closed and bounded subset being compact. Therefore, Part (i7) follows from the simple
observation that any closed and bounded subset of X with respect to the norm || - ||p is compact.
The proof is complete. O
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In the rest of this section, we are going to show the converse of Corollary 2.3(i¢) also holds.
Before this result, we need the following useful result.

Lemma 2.4. Riesz’s Lemma: Let Y be a closed proper subspace of a normed space X. Then for
each 0 € (0,1), there is an element xo € Sx such that d(x,Y) := inf{||lzo0 —y|| : y € Y} > 6.

Proof. Let w € X —Y and d := inf{|ju —y| : y € Y}. Notice that since Y is closed, d > 0
and hence, we have 0 < d < % because 0 < 6 < 1. This implies that there is yg € Y such that
0<d< |lu—yol <4 Now put zg := ﬁ € Sx. We are going to show that xg is as desired.
Indeed, let y € Y. Since yo + ||lu — yolly € Y, we have

1
on - yH - H

——lu — (yo + [l — wolly) || > d/[lu — yol| > 6.
u—yol|

So, d(z0,Y) > 0. 0

Remark 2.5. The Riesz’s lemma does not hold when 6 = 1. The following example can be found
in the Diestel’s interesting book without proof (see [3, Chapter 1 Ex.3(i)]).

Let X = {z € C([0,1],R) : #(0) = 0} and Y = {y € X : [) y(t)dt = 0}. Both X and Y are
endowed with the sup-norm. Notice that Y is a closed proper subspace of X. We are going to show
that for any z € Sy, there is y € Y such that ||z — y| < 1. Thus, the Riesz’s Lemma does not
hold as # =1 in this case.

In fact, let € Sx. Since z(0) = 0 with ||z]« = 1, we can find 0 < a < 1/4 such that |z(¢)| < 1/4
for all t € [0, al.

We fix 0 < € < 1/4 first. Since z is uniform continuous on [a, 1], we can find a partitions a = ty <
-+ < tp, =1 on [a,1] such that sup{|z(t) — z(t')| : t,t' € [tx_1,tx]} < &/4. Now for each (tx_1,tx),
if sup{z(t) : t € [tx_1,tk]} > &, then we set ¢(t) = . Also, if inf{z(t) : t € [tp_1,tk]} < —¢,
then we set ¢(t) = —e. From this, one can construct a continuous function ¢ on [a, 1] such that
¢ — Zlja,1)llc <1 and |p(z)| < 2¢ for all z € [a,1]. Hence, we have |fm1 o(t)dt| <2e(1 —a).

On the other hand, as |z(t)| < 1/4 on [0, al, so if we choose £ small enough such that (1 —a)(2¢) <
a/4, then we can find a continuous function y; on [0, a] such that |y;(¢)] < 1/4 on [0, a] with
y1(0) = 0;y1(a) = x(a) and [ y1(t)dt = — fal ¢(t)dt. Now we define y = y; on [0,a] and y = ¢ on
[a,1]. Then ||y — z|lcc <1 and y € Y is as desired.

Theorem 2.6. X is a finite dimensional normed space if and only if the closed unit ball Bx of X
18 compact.

Proof. The necessary condition has been shown by Proposition 2.3(i7).

Now assume that X is of infinite dimension. Fix an element 21 € Sx. Let Y7 = Kzy. Then
Y] is a proper closed subspace of X. The Riesz’s lemma gives an element xo € Sx such that
|x1 — x2|| > 1/2. Now consider Yo = span{z1,z2}. Then Y3 is a proper closed subspace of X since
dim X = oo. To apply the Riesz’s Lemma again, there is z3 € Sx such that ||zg — x| > 1/2 for
k = 1,2. To repeat the same step, there is a sequence (x,) € Sx such that ||z, — z,| > 1/2 for
all n # m. Thus, (z,,) is a bounded sequence without any convergence subsequence. So, By is not
compact. The proof is finished. O

Recall that a metric space Z is said to be locally compact if for any point z € Z, there is a
compact neighborhood of z. Theorem 2.6 implies the following corollary immediately.

Corollary 2.7. Let X be a normed space. Then X is locally compact if and only if dim X < oo.
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3. BOUNDED LINEAR OPERATORS

Proposition 3.1. Let T' be a linear operator from a normed space X into a normed space Y. Then
the following statements are equivalent.

(i) T is continuous on X.
(ii) T is continuous at 0 € X.
(iii) sup{||Tz| : x € Bx} < 0.
In this case, let ||T'|| = sup{||Tz|| : © € Bx} and T is said to be bounded.

Proof. (i) = (it) is obvious.

For (ii) = (i), suppose that T is continuous at 0. Let o € X. Let ¢ > 0. Then there is § > 0 such
that | Twl|| < e for all w € X with ||w|| < 0. Therefore, we have || Tz — Tzl = ||T'(x — zo)|| < € for
any x € X with ||z — z¢|| < . So, (i) follows.

For (ii) = (i), since T is continuous at 0, there is 6 > 0 such that |[Tz| < 1 for any z € X with
|z|| < 8. Now for any x € Bx with = # 0, we have ||3z|| < §. So, we see have |T(3z)|| < 1 and
hence, we have ||Tz|| < 2/§. So, (iii) follows.

Finally, it remains to show (iii) = (ii). Notice that by the assumption of (7i7), there is M > 0 such
that ||Tz|| < M for all z € Bx. So, for each x € X, we have ||Tz|| < M||z||. This implies that T
is continuous at 0. The proof is complete. O

Corollary 3.2. Let T : X — Y be a bounded linear map. Then we have
sup{||Tz|| : x € Bx} = sup{||Tz|| : z € Sx} =inf{M > 0: ||Tz| < M|z||, Vx € X}.

Proof. Let a = sup{||Tz|| : « € Bx}, b = sup{||Tz|| : * € Sx} and ¢ = inf{M > 0 : |Tz| <
Mlz||, Yz € X}.

It is clear that b < a. Now for each x € Bx with x # 0, then we have b > ||T(z/|z])|| =
(I/|lzIDITx|| > || Tx||. So, we have b > a and thus, a = b.

Now if M > 0 satisfies ||Tz|| < M||z||, Vz € X, then we have || Tw| < M for all w € Sx. So, we
have b < M for all such M. So, we have b < ¢. Finally, it remains to show ¢ < b. Notice that by
the definition of b, we have ||[Tz| < b||z|| for all x € X. So, ¢ <b. O

Proposition 3.3. Let X and Y be normed spaces. Suppose that X is of finite dimension n. Then
we have the following assertions.

(i) Any linear operator from X intoY must be bounded.
(ii) If Ty, + X — Y is a sequence of linear operators such that Tz — 0 for all x € X, then
[T%[l — 0.

Proof. Using Proposition 2.2 and the notation as in the proof, then there is ¢ > 0 such that

n n
D el < el > aied|
i=1 i=1
for all scalars aq, ..., ay,. Therefore, for any linear map 71" from X to Y, we have

Tz| < Te;
72| < ( max | Tei])cle]

for all z € X. This gives the assertions () and (i) immediately. O

Proposition 3.4. Let Y be a closed subspace of X and X/Y be the quotient space. For each
element v € X, put T :=x+Y € X/Y the corresponding element in X/Y . Define

(3.1) 1zl = inf{llz +y| -y € Y}
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If we let m: X — X/Y be the natural projection, that is w(x) = & for all z € X, then (X/Y,]| - ||)
is a normed space and m is bounded with ||w|| < 1. In particular, ||7|| =1 as Y is a proper closed
subspace.

Furthermore, if X is a Banach space, then so is X/Y .

In this case, we call || - || in (3.1) the quotient norm on X/Y .

Proof. Notice that since Y is closed, one can directly check that ||z|| = 0 if and only is z € Y, that
is, z=0¢€ X/Y. It is easy to check the other conditions of the definition of a norm. So, X/Y is
a normed space. Also, it is clear that 7 is bounded with ||7|| < 1 by the definition of the quotient
norm on X/Y.

Furthermore, if Y C X, then by using the Riesz’s Lemma 2.4, we see that ||| = 1 at once.

We are going to show the last assertion. Suppose that X is a Banach space. Let (Z,,) be a Cauchy
sequence in X/Y. It suffices to show that (z,) has a convergent subsequence in X/Y (Why?).
Indeed, since (Z,) is a Cauchy sequence, we can find a subsequence (Zy, ) of (Z,) such that

Hjnk+1 - jnkH < 1/2k
for all kK = 1,2.... Then by the definition of quotient norm, there is an element y; € Y such that
|0, — Tny +y1]| < 1/2. Notice that we have, z,, — y1 = T, in X/Y. So, there is yo € Y such that
|Tny —y2 — (xn, —y1)|| < 1/2 by the definition of quotient norm again. Also, we have z,, — y2 = Tp,.
Then we also have an element y3 € Y such that ||z,, —y3 — (zn, —¥2)|| < 1/22. To repeat the same
step, we can obtain a sequence (yx) in Y such that

| = Grs1 — (@, — v < 1/2°
for all £k =1,2.... Therefore, (x,, — yi) is a Cauchy sequence in X and thus, limy(z,, — yi) exists
in X while X is a Banach space. Set x = limy(z,, — yx). On the other hand, notice that we have
(Tp, —yx) = m(xy,) for all k =1,2,,,. This tells us that limj w(zy, ) = lim 7(zp, —yx) = 7(x) €
X/Y since m is bounded. So, (Z,) is a convergent subsequence of (Z,) in X/Y. The proof is
complete. O

Corollary 3.5. Let T : X — Y be a linear map. Suppose that Y is of finite dimension. Then T
is bounded if and only if ker T := {x € X : Tz = 0}, the kernel of T, is closed.

Proof. The necessary part is clear.

Now assume that ker T is closed. Then by Prop081t10n 3.4, X/ker T becomes a normed space.
Also, it is known that there is a linear injection T:X /kerT — Y such that T = T o 7, where
7w : X — X/kerT is the natural projection. Since dimY < oo and Tis injective, dim X / ker T < oo.

This implies that T is bounded by Proposition 3.3. Hence T is bounded because T' = Tormand
is bounded. 0

Remark 3.6. The converse of Corollary 3.5 does not hold when Y is of infinite dimension. For
example, let X := {z € 2 : Y °°  n?|lz(n)|*> < oo} (notice that X is a vector space Why?) and
Y = /2. Both X and Y are endowed with || - ||2-norm.

Define T': X — Y by Tx(n) = na(n) for v € X and n = 1,2.... Then T is an unbounded
operator(Check !!). Notice that ker ' = {0} and hence, ker T" is closed. So, the closeness of ker T
does not imply the boundedness of T" in general.

We say that two normed spaces X and Y are said to be isomorphic (resp. isometric isomorphic)
if there is a bi-continuous linear isomorphism (resp. isometric) between X and Y. We also write
X =Y if X and Y are isometric isomorphic.

Remark 3.7. Notice that the inverse of a bounded linear isomorphism may not be bounded.
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Example 3.8. Let X : {f € C®(—=1,1) : f" € C~1,1) for alln =10,1,2...} and Y := {f €
X : f(0) = 0}. Also, X and Y both are equipped with the sup-norm || - ||. Define an operator
S:X Y by

Sf(2) = /Oxf(t)dt

for f € X and x € (—1,1). Then S is a bounded linear isomorphism but its inverse S~ is
unbounded. In fact, the inverse S™1:Y — X is given by

S_lg =4
forgeY.

Recall that a metric space is said to be separable if there is a countable dense subset, for example,
the base field K is separable. Also, it is easy to see that a normed space is separable if and only if
it is the closed linear span of a countable dense subset.

Definition 3.9. We say that a sequence of element (ey)o>; in a normed space X is called a
Schauder base for X if for each element x € X, there is a unique sequence of scalars (o) such that

oo
(3.2) x = Z Q€.
n=1
Note: The expression in Eq. 3.2 depends on the order of ¢,’s.

Remark 3.10. Notice that if X has a Scahuder base, then X must be separable. The following
natural question we first raised by Banach (1932).

The base problem: Does every separable Banach space have a Schauder base?

The answer is “No”!

This problem was completely solved by P. Enflo in 1973.

Example 3.11. We have the following assertions.

(i) The space > is non-separable under the sup-norm ||-||oo. Consequently, £>° has no Schauder
base.
(ii) The spaces co and (P for 1 < p < oo have Schauder bases.

Proof. For Part (i) let D = {x € £~ : z(i) = 0 or 1}. Then D is an uncountable set and
|z — ylloc = 1 for & # y. Therefore {B(z,1/4) : € D} is an uncountable family of disjoint open
balls. So, £°° has no countable dense subset.

For each n = 1,2..., let e,(i) = 1 if n = 4, otherwise, is equal to 0.

Also, (e,) is a Schauder base for the space ¢y and 7 for 1 < p < co. O

Proposition 3.12. Let X and Y be normed spaces. Let B(X,Y') be the set of all bounded linear
maps from X into Y. For each element T € B(X,Y), let

IT[| = sup{||Tz[| : 2 € Bx}.

be defined as in Proposition 3.1.
Then (B(X,Y),|| - ||) becomes a normed space.
Furthermore, if Y is a Banach space, then so is B(X,Y).

Proof. One can directly check that B(X,Y) is a normed space (Do It By Yourself!).
We are going to show that B(X,Y) is complete if Y is a Banach space. Let (T},) be a Cauchy
sequence in L(X,Y). Then for each z € X, it is easy to see that (T,,x) is also a Cauchy sequence
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inY. So, lim T,z exists in Y for each z € X because Y is complete. Hence, one can define a map
Tz :=limT,x €Y for each x € X. It is clear that T is a linear map from X into Y.

It needs to show that T € L(X,Y) and ||T'—T,|| — 0 as n — oco. Let € > 0. Since (7},) is a Cauchy
sequence in L(X,Y'), there is a positive integer N such that ||T,, —T},|| < € for all m,n > N. So, we
have [|(T,, — Tp,)(x)|| < € for all x € Bx and m,n > N. Taking m — oo, we have ||Ta: —Thzl <e
for all n > N and = € Bx. Therefore, we have |T' — T,| < e for all n > N. From this, we see
that T'— T € B(X,Y) and thus, T =Ty + (I' —Ty) € B(X,Y) and ||T — T,|| — 0 as n — oo.
Therefore, lim,, T,, = T exists in B(X,Y). O

4. DUAL SPACES

By Proposition 3.12, we have the following assertion at once.

Proposition 4.1. Let X be a normed space. Put X* = B(X,K). Then X* is a Banach space and
1s called the dual space of X.

Example 4.2. Let X = K¥. Consider the usual Euclidean norm on X, that is, ||(z1,....,zn)| :=
V0z12+ - |zn|?. Define 6 : KN — (KN)* by 0x(y) = 21y1 + -+ + anyn for @ = (21,...,2N)
and y = (y1,...,yn) € KV. Notice that 0x(y) = (z,y), the usual inner product on K. Then by

the Cauchy-Schwarz inequality, it is easy to see that 0 is an isometric isomorphism. Therefore, we
have KN = (KV)*.

Example 4.3. Define a map T : {* — cy by

= > a(in(i)
i=1

forz € ' and n € .
Then T' is isometric isomorphism and hence, ¢ = o,

Proof. The proof is divided into the following steps.
Step 1. Tx € ¢ for all x € o
In fact, let n € ¢p. Then

o
T (n Z ()] < le )n(@)| < llzl[1lnlloo-

So, Step 1 follows.

Step 2. T is an isometry.

Notice that by Step 1, we have ||Tz|| < ||z||; for all x € 1. It needs to show that ||Tz| > ||z||; for
all z € ¢'. Fix z € ¢*. Now for each k = 1,2.., consider the polar form z(k) = |z(k)|e!*. Notice

that n, := (e71,...,e70,0,....) € ¢y for all n = 1,2.... Then we have
Z (k)| = w(k)na(k) = Tx(n,) = [Tx(n,)| < | Tx|
k=1

for all n = 1,2.... So, we have ||z|j; < |Tx|.

Step 3. T is a surjection.

Let ¢ € ¢ and let e, € cp be given by e (j) = 1 if j = k, otherwise, is equal to 0. Put z(k) := ¢(ex)
for k = 1,2... and consider the polar form x(k) = |z(k)|e?% as above. Then we have

D letk)=¢ Z “Okey,) <||¢H||Z e P erlloo = |9
k=1

k=1
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for all n = 1,2.... Therefore, z € (.
Finally, we need to show that Tz = ¢ and thus, T is surjective. In fact, if n = Y2, n(k)ex € co,
then we have

o) =Y _n(k)plex) = > n(k)zx = Ta(n).
k=1 k=1

So, the proof is finished by the Steps 1-3 above. O

Example 4.4. We have the other important examples of the dual spaces.
(i) () ==,
(ii) For 1 < p < oo, (¢P)* = {1, where % + % =1
(iii) For a locally compact Hausdorff space X, Cyp(X)* = M(X), where M (X) denotes the space
of all regular Borel measures on X.

Parts (i) and (i) can be obtained by the similar argument as in Example 4.3 (see also in [4, Chapter
8]). Part (ii7) is known as the Riesz representation Theorem which is referred to [4, Section 21.5]
for the details.

5. HAHN-BANACH THEOREM

All spaces X, Y, Z... are normed spaces over the field K throughout this section.

Lemma 5.1. Let Y be a subspace of X andv € X \Y. Let Z =Y @® Kuv be the linear span of Y
and v in X. If f € Y*, then there is an extension F' € Z* of f such that |[F|| = | f]|

Proof. We may assume that || f|| = 1 by considering the normalization f/||f|| if f # 0.

Case K =R:

We first note that since || f|| = 1, we have |f(x) — f(y)] < |[(x +v) — (y +v)|| for all z,y € Y. This
implies that —f(z) — ||z +v| < —f(y)+|ly+v]| for all z,y € Y. Now let v = sup{—f(z) — |z +v| :
x € X}. This implies that v exists and

(5.1) =) —lly+oll <v<=Ffly) +lly + ol

for all y € Y. We define F' : Z — R by F(y + aw) := f(y) + av. It is clear that F|y = f. For
showing F' € Z* with ||F|| = 1, since F|y = f on Y and | f|| = 1, it needs to show |F(y + av)| <
ly + avl|| for all y € Y and a € R.

In fact, for y € Y and a > 0, then by inequality 5.1, we have

(5.2) |F(y 4+ aw)| = | f(y) + ay| < [ly + aw].

Since y and « are arbitrary in inequality 5.2, we see that |F(y + av)| < ||y + av|| for all y € Y and
a € R. Therefore the result holds when K = R.

Now for the complex case, let h = Ref and g = Imf. Then f = h+ig and f, g both are real linear
with [|h|| < 1. Note that since f(iy) = if(y) for all y € Y, we have g(y) = —h(iy) for all y € Y.
This gives f(-) = h(-) —ih(i-) on Y. Then by the real case above, there is a real linear extension H
on Z :=Y @Ru@iRwv of h such that |H|| = ||h||. Now define F': Z — C by F\(-) := H(-) —iH(i-).
Then F € Z* and Fl|y = f. Thus it remains to show that |F|| = ||f|| = 1. It needs to show
that |F(z)| < ||z|| for all z € Z. Note for z € Z, consider the polar form F(z) = re?. Then
F(e™2) =r € R and thus F(e %z) = H(e %*%). This yields that

|F(2)] == [F(e"2)| = [H(e™"2)| < |H]lle™"2|| < ]I
The proof is finished. O
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Remark 5.2. Before completing the proof of the Hahn-Banach Theorem, Let us first recall one
of super important results in mathematics, called Zorn’s Lemma, a very humble name. Every
mathematics student should know it.

Zorn’s Lemma: Let X be a non-empty set with a partially order “ <”. Assume that every totally
order subset C of X has an upper bound, i.e. there is an element 3 € X such that ¢ < 3 for all ¢ € C.
Then X must contain a maximal element m, that is, if m < x for some x € X, then m = z.

The following is the typical argument of applying the Zorn’s Lemma.

Theorem 5.3. Hahn-Banach Theorem : Let X be a normed space and let Y be a subspace of
X. If f € Y*, then there exists a linear extension F € X* of f such that ||F|| = || f]

Proof. Let X be the collection of the pairs (Y7, f1), where Y C Y] is a subspace of X and f; € Y{*
such that fi|y = f and [/ filly; = [|f]ly+. Define a partial order < on X by (Y1, f1) < (Y2, f2) if
Y1 CYs and fa|y; = f1. Then by the Zorn’s lemma, there is a maximal element (?,F) in X. The
maximality of (Y, F') and Lemma 5.1 will give Y = X. The proof is finished. g

Proposition 5.4. Let X be a normed space and xo € X. Then there is f € X* with || f|| =1 such
that f(xo) = ||zo]|. Consequently, we have

[zoll = sup{|g(z)| : g € Bx~}.
Also, if x,y € X with x # y, then there exists f € X* such that f(x) # f(y).

Proof. Let Y = Kzg. Define fy : Y — K by fo(axg) := alxg|| for @« € K. Then fy € Y* with
| foll = ||zoll- So, the result follows from the Hahn-Banach Theorem at once. O

Remark 5.5. Proposition 5.4 tells us that the dual space X* of X must be non-zero. Indeed, the
dual space X* is very “Large” so that it can separate any pair of distinct points in X.
Furthermore, for any normed space Y and any pair of points z1,x9 € X with x1 # x2, we can
find an element 7' € B(X,Y) such that Tzy # Tzo. In fact, fix a non-zero element y € Y. Then
by Proposition 5.4, there is f € X* such that f(z1) # f(z2). So, if we define Tax = f(x)y, then
T € B(X,Y) as desired.

Proposition 5.6. With the notation as above, if M is closed subspace and v € X \ M, then there
is f € X* such that f(M) =0 and f(v) #0.

Proof. Since M is a closed subspace of X, we can consider the quotient space X/M. Let 7 : X —
X/M be the natural projection. Notice that v := 7(v) # 0 € X/M because v € X \ M. Then by
Corollary 5.4, there is a non-zero element f € (X/M)* such that f(v) # 0. So, the linear functional
f:=fome X*is as desired. O

Proposition 5.7. Using the notation as above, if X* is separable, then X is separable.

Proof. Let F' := {f1, fa....} be a dense subset of X*. Then there is a sequence (z,) in X with
lzn|| = 1 and |fn(zn)| > 1/2||frn|| for all n. Now let M be the closed linear span of z,’s. Then M
is a separable closed subspace of X. We are going to show that M = X.

Suppose not. Proposition 5.6 will give us a non-zero element f € X* such that f(M) = 0. Since
{f1, f2....} is dense in X*, we have B(f,r) N F #  for all »r > 0. Therefore, if B(f,r) N F # is
finite for some r > 0, then f = f,, for some f,,, € F'. This implies that || f]| = || fim| < 2|fm(zm)| =
2|f(zm)| = 0 and thus, f = 0 which contradicts to f # 0.
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So, B(f,r) N F is infinite for all » > 0. In this case, there is a subsequence (f,,) such that
| fn, — fIl = 0. This gives

1

because f(M) = 0. So ||fn,| = 0 and hence f = 0. It leads to a contradiction again. Thus, we
can conclude that M = X as desired. O

Remark 5.8. The converse of Proposition 5.7 does not hold. For example, consider X = ¢!. Then
¢' is separable but the dual space (¢1)* = ¢* is not.

Proposition 5.9. Let X and Y be normed spaces. For each element T € B(X,Y), define a linear
operator T* : Y* — X* by

T*y*(z) ==y (Tx)
fory* € Y* and x € X. Then T* € B(Y*, X*) and |T*|| = ||T||. In this case, T* is called the
adjoint operator of T.

Proof. We first claim that || 7*| < ||T'|| and hence, ||T*|| is bounded.

In fact, for any y* € Y* and x € X, we have |T*y*(z)| = |y*(Tz)| < ||ly*||[|T||||z]|. So, [|T*y*|| <
IT|llly*|| for all y* € Y. Thus, ||T[| < [T

It remains to show ||T'|| < ||T*||. Let = € Bx. Then by Proposition 5.4, there is y* € Sx- such
that ||Tz|| = |y*(Tx)| = |[T*y*(x)| < [|[T*y*|| < ||T*||. This implies that ||| < [|T%|. O

Example 5.10. Let X and Y be the finite dimensional normed spaces. Let (e;)i; and (f;)7L; be
the bases for X and Y respectively. Let 0x : X — X* and 6y : X — Y™ be the identifications as
in Example 4.2. Let ej := 0xe; € X* and f/ := 0y f; € Y*. Then ef(e) = d; and fj*(fl) = dji,
where, §;; = 1 if ¢ = [; otherwise is 0.

Now if T € B(X,Y) and (a;j)mxn is the representative matrix of T' corresponding to the bases
(ei)iz; and (fj)jL; respectively, then ax = fi(Te;) = T f;(e;). Therefore, if (aj,)nxm is the
representative matrix of 7™ corresponding to the bases (f}) and (e]), then ay = aj;,. Hence the
transpose (ay;)! is the the representative matrix of T*.

Proposition 5.11. Let Y be a closed subspace of a normed space X. Leti:Y — X be the natural
inclusion and m: X — X/Y the natural projection. Then

(i) the adjoint operator i** : Y** — X™* is an isometry.

(ii) the adjoint operator 7 : (X/Y)* — X* is an isometry.
Consequently, Y** and (X/Y)* can be viewed as the closed subspaces of X** and X* respectively.
Proof. For Part (i), we first notice that for any z* € X*, the image ¢*2* in Y* is just the restriction
of z* on Y, write z*|y. Now let ¢ € Y**. Then for any z* € X*, we have

i p(a7)] = [o(i"2")| = |o(a”|y)| < |l |y lly+ < [l x--

So, ||i**¢|| < ||#]. It remains to show the inverse inequality. Now for each y* € Y™, the Hahn-

Banach Theorem gives an element z* € X* such that ||z*||x- = ||y*||y+ and z*|y = y* and hence,
i*2* = y*. Then we have

0@y = [6(z"|v)| = [@(i"2")| = | 0 @) (z")| < [l [[|=" || x = [l D[]y |y~
for all y* € Y*. Therefore, we have ||i**¢| = ||¢||.
For Part (ii), let ¢» € (X/Y)*. Notice that since ||7*| = ||x|| < 1, we have ||7*¢| < [[¢]|. On the
other hand, for each z := 7(z) € X/Y with [|Z]| < 1, we can choose an element m € Y such that
|z +m| < 1. So, we have

(@) = [Yom(x)] = |pom(z+m)| <[por| =z ()
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Thus we have [|¢|| < ||7*(¢)||. The proof is finished. O

Remark 5.12. By using Proposition 5.11, we can give an alternative proof of the Riesz’s Lemma
2.4.

With the notation as in Proposition 5.11, if Y C X, then we have |7 = ||7*|| = 1 because 7* is an
isometry by Proposition 5.11(iz). Thus we have ||| = sup{||7(z)|| : x € X, ||z|| = 1} = 1. So, for
any 0 < 6 < 1, we can find element z € X with ||z|| = 1 such that 0 < ||7(2)| = inf{||z+y| : y € Y}.
The Riesz’s Lemma follows.

6. REFLEXIVE SPACES

Proposition 6.1. For a normed space X, let Q : X — X be the canonical map, that is,
Qu(x*) == x*(z) for a* € X* and x € X. Then Q is an isometry.

Proof. Note that for z € X and z* € Bx-, we have |Q(z)(z*)| = |z*(z)| < ||z]. Then ||Q(x)] <
Jall.

It remains to show that ||z|| < ||Q(z)| for all x € X. In fact, for z € X, there is z* € X* with
||lz*|| = 1 such that ||z| = |z*(z)| = |Q(z)(x*)| by Proposition 5.4. Thus we have ||z| < ||Q(z)].
The proof is finished. O

Remark 6.2. Let T : X — Y be a bounded linear operator and T** : X** — Y™** the second
dual operator induced by the adjoint operator of T. With notation as in Proposition 6.1 above,
the following diagram always commutes.

X T, vy

or| Jor

X** T** Y**
Definition 6.3. A normed space X is said to be reflexive if the canonical map @ : X — X** is
surjective. (Notice that every reflexive space must be a Banach space.)

Example 6.4. We have the following examples.

(i) : Every finite dimensional normed space X is reflezive.
(ii) : 0P is reflexive for 1 < p < oo.
(iii) : co and ' are not reflexive.

Proof. For Part (i), if dim X < oo, then dim X = dim X**. Hence, the canonical map @ : X — X**
must be surjective.

Part (ii) follows from (¢P)* = ¢ for 1 < p < o0, zl? + % = 1.

For Part (iii), notice that cf* = (¢1)* = ¢**. Since ¢*° is non-separable but cy is separable. So, the
canonical map @ from cg to ¢* = £°° must not be surjective.

For the case of ¢!, we have (¢})** = (£°°)*. Since £ is non-separable, the dual space (£*°)* is
non-separable by Proposition 5.7. So, £ # (£1)**. O

Proposition 6.5. Fvery closed subspace of a reflexive space is reflexive.

Proof. Let Y be a closed subspace of a reflexive space X. Let Qy : Y = Y™ and Qx : X — X** be
the canonical maps as before. Let yg* € Y**. We define an element ¢ € X** by ¢(z*) := y5* («*|y)
for x* € X*. Since X is reflexive, there is o € X such that Qxzo = ¢. Suppose z¢ ¢ Y. Then
by Proposition 5.6, there is x§ € X* such that z{(xo) # 0 but zj(Y) = 0. Note that we have
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x§(zo) = Qxxo(xf) = ¢(x5) = v (xf|y) = 0. It leads to a contradiction. So, g € Y. The proof is
finished if we have Qy (x0) = yg*.

In fact, for each y* € Y*, then by the Hahn-Banach Theorem, y* has a continuous extension z* in
X*. Then we have

Qv (z0)(y") = y" (o) = 27 (z0) = @x (w0)(2") = d(2") = yp" (="|y) = w0 (v")-
O

Example 6.6. By using Proposition 6.5, we immediately see that the space £ is not reflerive
because it contains a non-reflexive closed subspace cq.

Proposition 6.7. Let X be a Banach space. Then we have the following assertions.

(i) X is reflexive if and only if the dual space X* is reflexive.
(ii) If X is reflexive, then so is every quotient of X.

Proof. For Part (i), suppose that X is reflexive first. Let Z € X**. Then the restriction z := Z|x €
X*. Then one can directly check that Qz = z on X™* since X** = X.

For the converse, assume that X* is reflexive but X is not. So, X is a proper closed subspace of
X**. Then by using the Hahn-Banach Theorem, we can find a non-zero element ¢ € X*** such
that ¢(X) = 0. However, since X*** is reflexive, we have ¢ € X* and hence, ¢ = 0 which leads to
a contradiction.

For Part (ii), we assume that X is reflexive. Let M be a closed subspace of X and 7 : X — X/M
the natural projection. Notice that the adjoint operator 7* : (X/M)* — X* is an isometry (Check
!). So, (X/M)* can be viewed as a closed subspace of X*. So, by Part (i) and Proposition 6.5, we
see that (X/M)* is reflexive. Then X/M is reflexive by using Part (i) again.

The proof is complete. O

Lemma 6.8. Let M be a closed subspace of a normed space X. Let r: X* — M* be the restriction
map, that is x* € X* v x*|yy € M*. Put M+ = kerr := {z* € X* : 2*(M) = 0}. Then the
canonical linear isomorphism 7 : X*/M* — M* induced by r is an isometric isomorphism.
Proof. We first note that r is surjective by using the Hahn-Banach Theorem. It needs to show that
7 is an isometry. Notice that 7(z* + M*) = 2*|5 for all z* € X*. Now for any 2* € X*, we have
lz* +oy* x> ||o* +9*||ar= = ||*|arllar= for all y* € M. So we have ||[7(z* +ML)|| = ||lz*|arllar+ <
|z* + M=||. Tt remains to show the reverse inequality.
Now for any z* € X*, then by the Hahn-Banach Theorem again, there is z* € X* such that
2*|ar = o*|p and ||2*]| = ||z*|as]lar+. Then 2* — 2* € M+ and hence, we have z* + M+ = 2* + M.
This implies that

lz* + M| = |l2* + M| < 125 = [l |allaee = [IF(2* + M5
The proof is complete. O

Proposition 6.9. (Three space property): Let M be a closed subspace of a normed space X.
If M and the quotient space X /M both are reflexive, then so is X.

Proof. Let m : X — X/M be the natural projection. Let v € X**. We going to show that
Y € im(Qx). Since 7 () € (X/M)**, there exists rg € X such that 7°(¢) = Qx/p(zo + M)
because X /M is reflexive. So we have

T () (@) = Qxyn (o + M)(z7)
for all z* € (X/M)*. This implies that

B(E* o m) = Y E) = 7 (V)(&") = Qe (w0 + M)(E) = & (20 + M) = Qxao(@” o)
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for all * € (X/M)*. Therefore, we have
w = Qxxo on MJ‘.

So, we have 1 — Qx(z¢) € X*/M~*. Let f : M* — X*/M* be the inverse of the isometric
isomorphism 7 which is defined as in Lemma 6.8. Then the composite (¢ — Qxxzg) o f : M* —
X*/M*+ — K lies in M**. Then by the reflexivity of M, there is an element mg € M such that

(¥ = Qxxo) o f = Qum(mg) € M™.
On the other hand, notice that for each z* € X*, we can find an element m* € M™* such that

f(m*)x* + M|bot € X*/M+ because f is surjective, moreover, by the construction of 7 in Lemma
6.8, we see that x*|py = m*. This gives

U(@*) — 2% (2z0) = (b — Qxzo) (M) © f = Qi (mo)(m™) = m”*(mg) = z*(my).
Thus, we have ¢(z*) = 2*(z¢g+myg) for all z* € X*. From this we have ¢ = Qx(xo+mo) € im(Qx)
as desired. The proof is complete. O

7. WEAKLY CONVERGENT AND WEAK* CONVERGENT

Definition 7.1. Let X be a normed space. A sequence (xy,) is said to be weakly convergent if there
is x € X such that f(x,) — f(x) for all f € X*. In this case, x is called a weak limit of (x,,).

Proposition 7.2. A weak limit of a sequence is unique if it exists. In this case, if (x,) weakly
converges to x, write x = w-lim x,, or x, = .
n

Proof. The uniqueness follows from the Hahn-Banach Theorem immediately. O

Remark 7.3. It is clear that if a sequence () converges to x € X in norm, then xz, — .
However, the weakly convergence of a sequence does not imply the norm convergence.

For example, consider X = cy and (en). Then f(e,) — 0 for all f € ¢ = €% but (e,) is not
convergent in cg.

Proposition 7.4. Suppose that X is finite dimensional. A sequence (x,) in X is norm convergent
if and only if it is weakly convergent.

Proof. Suppose that (x,) weakly converges to z. Let B := {ej,..,en} be a base for X and let fj be
the k-th coordinate functional corresponding to the base B, that is v = Zé\;l fr(v)e for all v € X.

Since dim X < oo, we have fi in X* for all £ = 1,..., N. Therefore, we have lim,, fi(z,) = fi(z)
for all k =1,...,N. So, we have ||z, — z| = 0. O

Definition 7.5. Let X be a normed space. A sequence (f,) in X* is said to be weak* convergent
if there is f € X* such that lim,, f,(z) = f(x) for all x € X, that is f, point-wise converges to f.

In this case, f is called the weak* limit of (f,). Write f = w*-lim,, f, or fn v, f-

Remark 7.6. In the dual space X* of a normed space X, we always have the following implications:
“Norm Convergent” —> “Weakly Convergent” — “Weak* Convergent”.

Howewver, the converse of each implication does not hold.

Example 7.7. Remark 7.3 has shown that the w-convergence does not imply || - ||-convergence.
We now claim that the w*-convergence also Does Not imply the w-convergence.

Consider X = cy. Then ¢, = ¢* and c§* = (£1)* = (. Let ¢}, = (0,...0,1,0...) € £ = ¢, where
the n-th coordinate is 1. Then e}, 250 but ey -+ 0 weakly because €**(e}) = 1 for all n, where
e = (1,1,...) € £ = ¢}*. Hence the w*-convergence does not imply the w-convergence.
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Proposition 7.8. Let (f,) be a sequence in X*. Suppose that X is reflexive. Then f, — f if and

only if fn w, f-
In particular, if dim X < oo, then the followings are equivalent:

(i) + o 2 f;
(ii) : fu % f:
(iii) : fn 2= f.

Theorem 7.9. (Banach) : Let X be a separable normed space. If (f,) is a bounded sequence in
X*, then it has a w*-convergent subsequence.

Proof. Let D := {x1, x9,...} be a countable dense subset of X. Note that since (f,,)>°; is bounded,
(fn(x1)) is a bounded sequence in K. Then (f, (1)) has a convergent subsequence, say (fi (1)),
in K. Let ¢; := limy fi x(21). Now consider the bounded sequence (fix(z2)). Then there is
convergent subsequence, say (f2r(x2)), of (fir(z2)). Put ca := limy, fo 5 (z2). Notice that we still
have ¢; = limy, fo(x1). To repeat the same step, if we define (m,k) < (m/,k') if m < m/; or
m =m' with k <k, we can find a sequence (fp, k)mk in X* such that

(i) : (fmg1,6)72, is a subsequence of (f, k)5, for m =0,1,.., where fo i := f.

(ii) : ¢ = limy, fi, k(x;) exists for all 1 <i < m.
Now put hy, := fi . Then (hy) is a subsequence of (f,,). Notice that for each i, we have limy, hy(x;) =
limy, fi k(zs) = ¢; by the construction (i7) above. Since (||h|) is bounded and D is dense in X, we
have h(x) := limy hy(z) exists for all z € X and h € X*. That is h = w*-limy hy. The proof is
finished. 0

Remark 7.10. Theorem 7.9 does not hold if the separability of X is removed.

For example, consider X = (> and 0, the n-th coordinate functional on ¢>°. Then 6, € (£>)*
with ||| (goeys = 1 for all n. Suppose that (6,) has a w*-convergent subsequence (0, )3, Define
x € L™ by

0 if m #£ nyg;
z(m)= q1 if ™M = nog;
-1 if m = nogy1.

Hence we have |6, (%) — 0n,,, ()| = 2 for all i =1,2,... It leads to a contradiction. So (0,) has no
w*-convergent subsequence.

Corollary 7.11. Let X be a separable space. In X* assume that the set of all w*-convergent
sequences coincides with the set of all normed convergent sequences, that is a sequence (fy,) is
w*-convergent if and only if it is norm convergent. Then dim X < oo.

Proof. Tt needs to show that the closed unit ball Bx+ in X* is compact in norm. Let (f,) be a
sequence in Bx«. By using Theorem 7.9, (f,,) has a w*-convergent subsequence (fy, ). Then by the
assumption, (fy,) is norm convergent. Note that if lilgn fn, = [ in norm, then f € Bx«. So Bx~ is

compact and thus dim X* < co. So dim X™** < oo that gives dim X is finite because X C X**. [

Corollary 7.12. Suppose that X is a separable. If X is reflexive space, then the closed unit ball
Bx of X is sequentially weakly compact, i.e. it is equivalent to saying that any bounded sequence
i X has a weakly convergent subsequence.

Proof. Let @ : X — X™** be the canonical map as before. Let (x,) be a bounded sequence in X.
Hence, (Qx,,) is a bounded sequence in X**. We first notice that since X is reflexive and separable,
X* is also separable by Proposition 5.7. So, we can apply Theorem 7.9, (Qz,) has a w*-convergent
subsequence (Qzy, ) in X** = Q(X) and hence, (z,, ) is weakly convergent in X. O
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8. OPEN MAPPING THEOREM

Let E and F' be the metric spaces. Recall that a mapping f : E — F is called an open mapping
if f(U) is an open subset of F' whenever U is an open subset of E.
It is clear that a continuous bijection is a homeomorphism if and only if it is an open map.

Remark 8.1. Warning An open map need not be a closed map.
For example, let p : (z,y) € R? = 2 € R. Then p is an open map but it is not a closed map. In
fact, if we let A= {(x,1/z):x # 0}, then A is closed but p(A) =R\ {0} is not closed.

Lemma 8.2. Let X and Y be normed spaces and T : X — Y a linear map. Then T is open if and
only if 0 is an interior point of T(U) where U is the open unit ball of X.

Proof. The necessary condition is obvious.

For the converse, let W be a non-empty subset of X and a € W. Put b = Ta. Since W is open,
we choose 7 > 0 such that Bx(a,r) € W. Notice that U = (Bx(a,r) —a) € 2(W — a). So, we
have T(U) C 1(T(W) —b). Then by the assumption, there is § > 0 such that By (0,6) C T(U) C
L(T(W) — b). This implies that b+ rBy(0,6) € T(W) and so, T(a) = b is an interior point of
T(W). 0

Corollary 8.3. Let M be a closed subspace of a normed space X. Then the natural projection
m: X — X/M is an open map.

Proof. Put U and V the open unit balls of X and X/M respectively. Using Lemma 8.2, the result
is obtained by showing that V' C 7(U). Note that if z = 7(z) € V, then by the definition a quotient
norm, we can find an element m € M such that ||z + m| < 1. Hence we have x + m € U and
z=m(x+m)enU). O

Lemma 8.4. Let T : X — Y be a bounded linear surjection from a Banach space X onto a
Banach space Y. Then 0 is an interior point of T(U), where U is the open unit ball of X, that is,
U:={zxeX:|z|]| <1}

Proof. Set U(r) :={z € X : ||z|| < r} for » > 0 and so, U = U(1).

Claim 1 : 0 is an interior point of T'(U(1)).

Note that since T is surjective, Y = (72, T(U(n)). Then by the second category theorem, there
exists N such that int T(U(N)) # 0. Let y' be an interior point of T(U(N)). Then there is
n > 0 such that By(y',n) € T(U(N)). Since By(y',n) N T(U(N)) # (), we may assume that
y € T(U(N)). Let 2’ € U(N) such that T'(2’) = y'. Then we have

0€By(y,n) -y CTUN))-T(") CT(U@2N)) =2NT(U(1)).

So we have 0 € 5% (By (y',n) —y') € T(U(1)). Hence 0 is an interior point of T(U(1)). So Claim 1
follows.
Therefore there is 7 > 0 such that By (0,7) C T(U(1)). This implies that we have

(8.1) By (0,7/28) C T(U(1/2%))

forall k =0,1,2....

Claim 2: D := By (0,7) CT(U(3)).

Let y € D. By Eq 8.1, there is 1 € U(1) such that ||y — T'(z1)|| < /2. Then by using Eq 8.1
again, there is xo € U(1/2) such that ||y — T'(x1) — T'(z2)|| < r/22. To repeat the same steps, there
exists is a sequence (z) such that z; € U(1/2571) and

ly = T(a1) = Tw2) = .. = T(ay)|| < /2"
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for all k. On the other hand, since > 5o, [lzx| < D52, 1/2F7! and X is Banach, z := > 72, oy
exists in X and ||z|| < 2. This implies that y = T'(z) and ||z| < 3.
Thus we the result follows. O

Theorem 8.5. Open Mapping Theorem : Retains the notation as in Lemma 8.4. Then T is
an open mapping.

Proof. The proof is finished by using Lemmas 8.2 and 8.4 at once. U

Proposition 8.6. Let T be a bounded linear isomorphism between Banach spaces X and Y. Then
T~ must be bounded.

Consequently, if |- || and ||-||" both are complete norms on X such that ||| < ¢||-||" for some ¢ > 0,
then these two norms || - || and || - || are equivalent.

Proof. The first assertion follows from the Open Mapping Theorem at once.
Therefore, the last assertion can be obtained by considering the identity map I : (X, ||-||) = (X, ||]|")
which is bounded by the assumption. O

Corollary 8.7. Let X and Y be Banach spaces and T : X —'Y a bounded linear operator. Then
the followings are equivalent.
(i) The image of T is closed in'Y .
(ii) There is ¢ > 0 such that
d(z,ker T') < c||Tz||
forallz e X.
(iii) If (z,) is a sequence in X such that ||z, +ker T|| =1 for all n, then || Txy| - 0.

Proof. Let Z be the image of T'. Then the canonical map T:X /kerT — Z induced by T is a
bounded linear isomorphism. Notice that T(f) =Tz forall z € X, where z := z+kerT € X/kerT.
For (i) = (i1): suppose that Z is closed. Then Z becomes a Banach space. Then the Open
Mapping Theorem implies that the inverse of T is also bounded. So, there is ¢ > 0 such that
d(x,ker T) = || Z|| x/ ker 7 < | T(z)|| = ¢||T(z)]|| for all z € X. So, (ii) follows.

For (it) = (i), let (x,) be a sequence in X such that limTx, = y € Y exists and so, (T'z,) is
a Cauchy sequence in Y. Then by the assumption, (Z,) is a Cauchy sequence in X/kerT. Since
X/kerT is complete, we can find an element € X such that limz,, = Z in X/ker T. This gives
y =lmT(z,) = limT(z,) = T(z) = T(z). So, y € Z.

(79) < (i14) is clear. The proof is finished. O

Proposition 8.8. Let X and Y be Banach spaces. Let T and K belong to B(X,Y'). Suppose that
T(X) is closed and K is of finite rank, then the image (T + K)(X) is also closed.

Proof. Suppose not. Now we write z := z + ker(T + K) for z € X. Then by Corollary 8.7, there is
a sequence (z,) in X such that ||z,|| =1 for all n and [|[(T'+ K)z,|| — 0. Thus, (z,) can be chosen
so that it is bounded. By passing a subsequence of (z,,) we may assume that y := lim,, K (x,,) exists
in Y because K is of finite rank. Therefore, we have lim,, T'(x,) = —y. Since T has closed range,
we have Tx = —y for some x € X. This gives limT(z, — z) = 0. Notice that the natural map
T is a topological isomorphism from X/ker T onto T(X) because T(X) is closed. So, we see that
|xn —z+ker T|| — 0 and thus, ||y — K(z)+ K(ker T)|| = lim | K (x,,) — K () + K (ker T')|| = 0. From
this we have y — Kx = Ku for some u € ker T'. Also, for each n, there is an element t,, € ker T so
that ||z, —x + t,|| < 1/n. This implies that

K (tn — w)l| < K (tn + (20 —2)) | + || = K(2zn + 2) = K(u)|| < [|K[[1/n — 0.

Therefore, we have |[|t,, — u+ (ker T'Nker K)|| — 0 because ¢,, —u € ker T and the image of K|kerT
is closed. From this we see that ||¢,, — u + ker(T'+ K)| — 0.
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On the other hand, since Tx = —y = —Kx — Ku and u € ker T, we have (T + K)z = —Ku —Tu
and so, = + u € ker(T' + K). Then we can now conclude that

1Znll = [1Zn — (2 + )| < |Zn = Z — ol + [[tn — @l = 0.

It contradicts to the choice of x,, such that ||Z,|| = 1 for all n. The proof is finished. O

Remark 8.9. In general, the sum of operators of closed ranges may not have a closed range. Before
looking for those examples, let us show the following simple useful lemma.

Lemma 8.10. Let X be a Banach space. If T € B(X) with ||T|| < 1, then the operator 1 — T is
invertible, that is, there is S € B(X) such that (1 —-T)S =S(1-T) =1.

Proof. Note that since X is a Banach space, the set of all bounded operators B(X) is a Banach
space under the usual operator norm. This implies that the series >_7 T* is convergent in B(X )
n

because ||T'|| < 1. On the other hand, we have 1 — 7" = (1 — T)(Z T*) for all n = 1,2.... Taking
k=0

oo
n — 0o, we see that (1 — 7))~ ! exists, in fact, (1 —T)"! = ZTk. O
k=0

Example 8.11. Define an operator Ty : £>° — £*° by

1

To(z)(k) == Efﬂ(k)

for z € £*° and k = 1,2.... Notice that Tp is injective with ||Tp|| < 1 and im Ty C ¢o. The Open
mapping Theorem tells us that the image im Ty must not be closed. Otherwise Ty becomes an
isomorphism from £*° onto a closed subspace of ¢y. It is ridiculous since £°° is nonseparable but
¢o is not. Now if we let 7' := 3Ty, then ||| < 1 and T is without closed range. Applying Lemma
8.10, we see that the operator S := 1 — T is invertible and thus, S has closed range. Then by our
construction 7" = 1 — S is the sum of two operators of closed ranges but 1" does not have closed
range as required.

9. CLOSED GRAPH THEOREM

Let T : X — Y. The graph of T, write §(T') is defined by the set {(x,y) € X xY :y =T (z)}.
Now the direct sum X @Y is endowed with the norm || - ||, that is ||z ® y||e := max(||z| x, [|y|y)-
We also write X @ Y when X &Y is equipped with this norm.

We say that an operator 7' : X — Y is said to be closed if its graph G(T") is a closed subset of
X @ Y, that is, if a sequence (z,) of X satisfying the condition ||(zy,T%y) — (2,y)]cc — O for
some x € X and y € Y implies T'(z) = y.

Theorem 9.1. Closed Graph Theorem : Let T : X — Y be a linear operator from a Banach
space X to a Banach Y. Then T is bounded if and only if T is closed.

Proof. The part (=) is clear.
Assume that T is closed, that is, the graph G(T') is || - ||sc-closed. Define || - ||o : X — [0, 00) by

lzllo = llzll + [T ()]l

for x € X. Then || - |lo is a norm on X. Let I : (X, |- |jo) — (X,] - ||) be the identity operator. It
is clear that I is bounded since || - || < || - [|o-

Claim: (X, || - ||o) is Banach. In fact, let (z,,) be a Cauchy sequence in (X, || - ||p). Then (z,) and
(T'(zy,)) both are Cauchy sequences in (X, || - ||) and (Y, - ||y). Since X and Y are Banach spaces,
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there are z € X and y € Y such that ||z, — z|[x — 0 and ||T(z,) — y|ly — 0. Thus y = T'(x) since
the graph §(7') is closed.

Then by Theorem 8.6, the norms || - || and || - [|o are equivalent. So, there is ¢ > 0 such that
T <1 |lo <c| | and hence, T is bounded since || T'(-)|| < || - |lo- The proof is finished. O

Example 9.2. Let D := {c = (c,) € 2 : 322 n?|e,|* < oo}, Define T : D — 2 by T(c) =
(ncy). Then T is an unbounded closed operator.

Proof. Note that since ||Te,|| = n for all n, T is not bounded. Now we claim that 7" is closed.
Let (x;) be a convergent sequence in D such that (7x;) is also convergent in £2. Write x; = (2;.,)5%,
with limx; = x := (z,,) in D and imTx; = y := (y,) in ¢?. This implies that if we fix ng, then
(2 (2
limx; ,, = op, and limnox;n, = Yn,. This gives noxn, = Yn,- Thus Tx =y and hence T is
7 (2
closed. 0

Example 9.3. Let X = {f € C*(0,1) N C>®(0,1) : f' € C*(0,1)}. Define T : f € X v f' €
C®(0,1). Suppose that X and C®(0,1) both are equipped with the sup-norm. Then T is a closed
unbounded operator.

Proof. Note that if a sequence f, — f in X and f — g in C%(0,1). Then f’ = g. Hence T is
closed. In fact, if we fix some 0 < ¢ < 1, then by the Fundamental Theorem of Calculus, we have

0= (o) — 1) = tia( [ (7200~ F©)0) = [ o(0) ~ )t

for all # € (0,1). This implies that we have [ g(t)dt = [ f'(t)dt. So g = f" on (0,1).
On the other hand, since ||Tz"||o = n for all n € N. Thus 7T is unbounded as desired. O

10. UNIFORM BOUNDEDNESS THEOREM

Theorem 10.1. Uniform Boundedness Theorem : Let {T; : X — Y :i € I} be a family of
bounded linear operators from a Banach space X into a normed space Y. Suppose that for each
x € X, we have sup ||T;(x)|| < co. Then sup ||T;|| < oo.

el iel

Proof. For each x € X, define

[2]lo := max(fjz[], sup | Ti(2)]])-
i€l
Then || - |lo is a norm on X and || - || < || - |lo on X. If (X,| - [jo) is complete, then by the Open
Mapping Theorem. This implies that || - || is equivalent to || - ||o and thus there is ¢ > 0 such that

1T5(2)Il < s{g)HTi(w)H < [lzllo < cll|
(2

for all x € X and for all j € I. So ||Tj|| < c for all j € I is as desired.

Thus it remains to show that (X, || - |lo) is complete. In fact, if (z,) is a Cauchy sequence in
(X, ]lo), then it is also a Cauchy sequence with respect to the norm |- || on X. Write z := lim,, z,,
with respect to the norm || - ||. Also for any € > 0, there is N € N such that ||T;(x, — zp)|| < €
for all m,n > N and for all 4 € I. Now fixing ¢ € I and n > N and taking m — oo, we have
| Ti(xr, — x)|| < e and thus sup;c; || Ti(zn, — )| < € for all n > N. So we have ||z, — z|lo — 0 and
hence (X, || - |jo) is complete. The proof is finished. O

Remark 10.2. Consider coo := {x = (x,) : 3 N,V n > N;z, = 0} which is endowed with || - ||cc-
Now for each k € N, if we define Ty, € ¢y by Tr((zy)) := kxy, then supy |Tx(x)| < oo for each
X € coo but (||Tx||) is not bounded, in fact, |Ty|| = k. Thus the assumption of the completeness of
X in Theorem 10.1 is essential.
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Corollary 10.3. Let X and Y be as in Theorem 10.1. Let T, : X — Y be a sequence of bounded
operators. Assume that limy, T (x) exists in' Y for all x € X. Then there is T € B(X,Y) such that
limg [[(T — Tx)z|| = 0 for all x € X. Moreover, we have ||T|| < limkinf | Ty |-

Proof. Notice that by the assumption, we can define a linear operator T from X to Y given by
Tz := limy, Tyx for € X. It needs to show that T is bounded. In fact, (||7%||) is bounded by the
Uniform Boundedness Theorem since limy, Tz exists for all x € X. So for each z € By, there is a
positive integer K such that ||[Tz|| < ||Txz| + 1 < (supy || 7x||) + 1. Thus, T' is bounded.

Finally, it remains to show the last assertion. In fact, notice that for any x € Bx and ¢ > 0,
there is N(x) € N such that ||Tz|| < ||[Txx| + ¢ < ||Tk|| + ¢ for all k£ > N(x). This gives ||[Tz| <
infy> N(2) 1Tkl + € for all k > N(x) and hence, || Tz < infysn ) [|Tk]l + ¢ < sup, infrsy, [|Th] + €
for all x € Bx and ¢ > 0. So, we have ||T']| < limkinf IT%|| as desired. O

Corollary 10.4. FEvery weakly convergent sequence in a normed space must be bounded.

Proof. Let (z,) be a weakly convergent sequence in a normed space X. If we let Q : X — X**
be the canonical isometry, then (Qz,) is a bounded sequence in X**. Notice that (x,) is weakly
convergent if and only if (Qzy,) is w*-convergent. So, (Qz,(z*)) is bounded for all z* € X*. Notice
that the dual space X* must be complete. So, we can apply the Uniform Boundedness Theorem
to see that (Qzy) is bounded and so is (z,). O

11. PROJECTIONS ON BANACH SPACES

Throughout this section, let X be a Banach space. Recall that a linear operator P : X — X is
called a projection (or idempotent) if it is bounded and satisfies the condition P? = P.
Also, a closed subspace E of X is said to be complemented if there is a closed subspace F' of X
such that X = E @ F.

Proposition 11.1. A closed subspace E of X is complemented if and only if there is a projection
Q on X with E =1im Q.

Proof. We first suppose that there is a closed subspace F' of X such that X = F & F. Define an
operator Q: X — X by Qr =uifx =u+v foru € E and v € F. It is clear that we have Q@ = Q.
For showing the boundedness of @, by using the Closed Graph Theorem, we need to show that if
(z,,) is a sequence in F such that limz, = z and lim Qx,, = u for some z,u € E, then Qz = u.
Indeed, if we let z,, = y, + 2, where y, € E and z, € F, then Qx,, = y,. Notice that (z,) is
a convergent sequence in F' because z, = x, — y, and (z,) and (y,) both are convergent. Let
w = lim z,,. This implies that

x =limz, =lim(y, + z,) = u + w.

Since FE and F' are closed, we have u € E and w € F. Therefore, we have Qx = u as desired.
The converse is clear. In fact, we have X = im @ ® ker () in this case. O

Example 11.2. If M is a finite dimensional subspace of a normed space X, then M is comple-
mented in X.

In fact, if M is spanned by {e; : i = 1,2..,m}, then M is closed and by the Hahn-Banach Theorem,
for each i =1,...,m, there is e € X* such that €(e;) =1 if i = j, otherwise, it is equal to 0. Put
N =" keref. Then X =M & N.

The following example can be found in [1].
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Example 11.3. ¢q is not complemented in £°.

Proof. It will be shown by the contradiction. Suppose that ¢y is complemented in £°°.

Claim 1: There is a sequence (fy,) in (¢°°)* such that ¢y = [, ker f,.

In fact, by the assumption, there is a closed subspace F' of £*° such that £*° = ¢y @ F. If we let P
be the projection from ¢°° onto F' along this decomposition, then ker P = ¢y and P is bounded by
the Closed Graph Theorem. Let €} : /> — K be the n-th coordinate functional. Then e, € (£°°)*.
So, if we put f, = e} o P, then f, € ({*°)* and ¢y =, ker f,, as desired.

Claim 2: For each irrational number a € [0, 1], there is an infinite subset N, of N such that
Nq N Ng is a finite set if o and 8 both are distinct irrational numbers in [0, 1].

In fact, we write [0,1] N Q as a sequence (r,). Then for each irrational « in [0, 1], there is a
subsequence (ry, ) of (ry,) such that limyr,, = . Let Ny := {n; : £ = 1,2...}. From this, we see
that N, N Nj is a finite set whenever «, 5 € [0,1] N Q° with « # . Claim 2 follows.

Now for each o € [0,1] N Q¢, define an element z, € ¢ by z,(k) = 1 as k € N,; otherwise,
zo(k) = 0.

Claim 3: If f € (¢*°)* with ¢y C ker f, then for any n > 0, the set {a € [0,1] N Q° : | f(za)| > 1}
is finite.

Notice that by considering the decomposition f = Re(f) + iIm(f), it suffices to show that the set
{a €0,1]NQ°: f(xa) = n} is finite. Let ai,...an in [0,1] N Q€ such that f(za;) >n,j=1,...,N.
Now for each j = 1,..,N, set y;(k) =1 as k € No, \ U,;,; Na,; otherwise y; = 0. Notice that
To; — Yj € co since Ny N Ny is finite for o # § by Claim 2. Hence, we have f(z,) = f(y;) for all
j=1,...,N. Moreover, we have {k : y;(k) = 1} N {k;yi(k) =1} =0 for i,j = 1,..., N with i # j.
So, we have ||y||cc = 1. Now we can conclude that

N
1A= FQui) =D flaa,) = Nu.

j=1 j=1

This implies that [{a : f(a) > n}| < || f]|/n. Claim 3 follows.

We can now going to complete the proof. Now let (f,) be the sequence in (¢*°)* as found in the
Claim 1. Claim 3 implies that the set S := 7~ ;{a € Q°N[0,1] : fn(zq) # 0} is countable. Thus,
there must exists v € [0,1] N Q€ such that v ¢ S. Thus, we have z., € (2, ker f,,. On the other
hand, since N, is an infinite set, we see that x, ¢ cy. Therefore, we have ¢y C (ker fi which

contradicts to Claim 1.
The proof is finished. O

Proposition 11.4. (Dixmier) Let X be a normed space. Leti: X — X** and j : X* — X***
be the natural embeddings. Then the composition Q := j o ¢* : X** — X™* is a projection with
Consequently, X* is a complemented closed subspace of X***.

Proof. 1t is clear that @) is bounded. On the other hand, notice that ¢* o j = Idx~ : X* — X*.
From this, we see that Q2 = @ as desired.
It remains to show that im @ = X*, more precisely, im @ = j(X*). In fact, it follows from Qoj = j
by using the equality i* o j = Idx+ again.
The last assertion follows from Proposition 11.1 at once. O

Corollary 11.5. ¢q is not isomorphic to the dual space of a normed space.

Proof. Suppose not. Let T : ¢cg — X™* be an isomorphism from ¢y onto the dual space of some
normed space X. Then T™* : ¢j* = £°° — X™ is an isomorphism too. Let () : X™* — X*** be
the projection with im () = X* which is found in Proposition 11.4.

Now put P := (T**)"' o Qo T* : {>* — >, Then P is a projection.
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On the other hand, we always have T**|,, = T (see Remark 6.2). This implies that im P = cy.
Thus, ¢ is complemented in £*° by Proposition 11.1 which leads to a contradiction by Example
14.4. The proof is finished. O

12. APPENDIX: BASIC SEQUENCES

Throughout this section, X always denotes a Banach space.

Recall that an infinite sequence (z,) in X is called a basic sequence if for each element z in
Xo := [x1, 29, -], the closed linear span of {x1,x2,...}, then there is a unique sequence of scalars
(an) such that © = 72, a;x;. Put ¢; the corresponding i-th coordinate function, that is ¢ (z) := a;
and @Q,, : Xo — E,, := [z - - - 2] the i-th canonical projection, that is, Qn (D> oy aiz;) == Y iy a;T;.

Theorem 12.1. Using the notation as above, for each element x € Xo, put

q(z) = sup{||Qn(z)|| : n = 1,2...}.
Then

(i) q is a Banach equivalent norm on X.
(i) Each coordinate projection Q, and coordinate function 1, are bounded in the original norm-
topology.

Proof. Since z = lim,, Q,z for all x € X, we see that ¢ is a norm on Xy and ¢(-) > || - || on Xp.
From this, together with the Open Mapping Theorem, all assertions follows if we show that ¢ is a
Banach norm on Xj.

Let (x,,) be a Cauchy sequence in X with respect to the norm ¢. Clearly, (z,) is also a Cauchy
sequence in the || - ||-topology because ¢(-) > || - ||. Let z = lim, z, be the limit in X; in the
|| - ||-topology. We are going to show that x is also the limit of (x,,) with respect to the g-topology.
We first notice that y; := lim,, Qrx, exists in X for all kK = 1,2, ... by the definition of the norm gq.
Claim 1: || - |-limy, = =.

Let € > 0. Then by the definition of the norm ¢ and || - ||-lim,, = x,,, there is a positive integer Ny
such that ||Qrzy — Qram|| < € and ||[xy — x4 || < € for all m, N > Ny and for all k = 1,2.... This
gives

2 = Qremll < llz —2n || + lon, — Qran, || + |Qrry — Qrmll < 26 + [lzn, — Qran, ||
for all m > N; and for all positive integers k. So, if we take m — oo, then we have
|z —yll < 2e+||zn, — Qron, || — 26 4+0  ask — oo.

Claim 2: Qpx =y for all k =1,2....
Fix a positive integer k;. Notice that Q, yx = yk, for all £ > k;. Indeed, since Ej, and Ej, are of
finite dimension, the restrictions Qg, |Ey and Qg|Ey, both are continuous. This implies that

Qr Yk = Qr, (117511 Qrryp) = lim Qr, Qr(xyn) = lim QxQr, (xn) = Qk(hrrln Q1 n) = Qr(Yr,) = Yn,

for all k£ > k;. Henece, there is a sequence of scalars (3,,) so that y, = Zle Bix; for all k =1,2...
On the other hand, if we let z = Y7, a;x;, then by Claim 1 we have limy(y; — Qrx) = 0 and thus
we have > 2, (8 — oi)x; = 0. Therefore, we have ; = o for all i = 1,2.... The Claim 2 follows.
It remains to show that lim, ¢(z, — x) = 0.

Let n > 0. Then there is a positive integer N so that ||Qxz, — Qrzm| < n for all m,n > N and for
all positive integers k. Taking m — oo, Claim 2 gives

1Qrn — Qrz| = [|Qran —yrll <7
for all n > N and for all positive integers k. The proof is finished. O
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13. GEOMETRY OF HILBERT SPACE 1

From now on, all vectors spaces are over the complex field. Recall that an inner product on a
vector space V' is a function (-,-) : V x V' — C which satisfies the following conditions.

(i) (z,z) >0 for all z € V and (x,z) =0 if and only if x = 0.
(i) (z,y) = (y,z) for all z,y € V.
(ili) (ax + By, z) = a(z,z) + By, z) for all z,y,z € V and o, § € C.
Consequently, for each € V, the map y € V = (x,y) € C is conjugate linear by the conditions
(74) and (#ii), that is (z,ay + Bz) = a(z,y) + B(x, z) for all y,z € V and o, § € C.
Also, the inner product (-,-) will give a norm on V' which is defined by
] = v/ (z, 2)

forx eV.

We first recall the following useful properties of an inner product space which can be found in the
standard text books of linear algebras.

Proposition 13.1. Let V' be an inner product space. For all x,y € V, we always have:

(i): (Cauchy-Schwarz inequality): |[(z,y)| < ||z||||y|| Consequently, the inner product on
V x V is jointly continuous.
(ii): (Parallelogram law): |}z + y” + | — y||2 = 2]z]]2 + 2lly|1
Furthermore, a norm || - || on a vector space X is induced by an inner product if and only if it
satisfies the Parallelogram law. In this case such inner product is given by the following:

1 1 ) .
Re(z,y) = 2 (lz +yl* = |z —yl*) and Im(z,y) = Z (o +iyll* - = - iy]*)
forall x,y € X.

Example 13.2. It follows from Proposition 13.1 immediately that ¢? is a Hilbert space and (P is
not for all p € [1,00] \ {2}.

From now on, all vector spaces are assumed to be a complex inner product spaces. Recall that
two vectors z and y in an inner product space V are said to be orthogonal if (x,y) = 0.

Proposition 13.3. (Bessel’s inequality) : Let {eq,...,en} be an orthonormal set in an inner
product space V, that is (e;,ej) =1 if i = j, otherwise is equal to 0. Then for any v € V, we have

N

>l en)l® < .
i=1

Proof. It can be obtained by the following equality immediately
N N
lz = (,ei)esl)* = l|=[* = > |z, ).
i=1 i=1
O

Corollary 13.4. Let (e;)ier be an orthonormal set in an inner product space V. Then for any
element x € V, the set

{iel: (e,z)#0}

1s countable.
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Proof. Note that for each x € V| we have

{i€l:(e,2) #0y = [ J{i € I |(es, )| > 1/n}.

n=1
Then the Bessel’s inequality implies that the set {i € I : |(e;,z)| > 1/n} must be finite for each
n > 1. So the result follows. OJ

The following is one of the most important classes in mathematics.

Definition 13.5. A Hilbert space is a Banach space whose norm is given by an inner product.

In the rest of this section, X always denotes a complex Hilbert space with an inner product (-, -).

Proposition 13.6. Let (e,,) be a sequence of orthonormal vectors in a Hilbert space X. Then for
any x € V, the series Y -~ | (x,ey)e, is convergent.

Moreover, if (e5n)) is a rearrangement of (en), that is, o : {1,2..} — {1,2,..} is a bijection.
Then we have

Z(.%', en)en = Z(xv ea(n))ea(n)'
n=1 n=1

Proof. Since X is a Hilbert space, the convergence of the series Y 7 (z,ey)e, follows from the
Bessel’s inequality at once. In fact, if we put s, :== >0 _ (z,e,)ey,, then we have

‘|5p+k_5p”2 = Z |(z, en)]?.
p+1<n<p+k
Now put y = 372 | (2, en)en and 2z = 3772 1 (¥, €5(n) )€q(n)- Notice that we have
N N
(y,y —2) = I%H(Z(x, €n)en, Z(CE, €n)en — 2)
n=1 n=1
N N o)
T 9 . T
—hj{fn;K%@nN —llj{fn;(%@n)Z(xaea(j))(en’ea(j))

Jj=1

o) N
Z |(x,e,)| — lij{fn Z(x, en)(z,en) (N.B: for each n, there is a unique j such that n = o(j))
n=1 n=1

= 0.
Similarly, we have (z,y — z) = 0. The result follows. O

A family of an orthonormal vectors, say B, in X is said to be complete if it is maximal with
respect to the set inclusion order,that is, if € is another family of orthonormal vectors with B C €,
then B = C.

A complete orthonormal subset of X is also called an orthonormal base of X.

Proposition 13.7. Let {e;}icr be a family of orthonormal vectors in X. Then the followings are
equivalent:
(i): {ei}tier is complete;
(ii): if (z,e;) =0 for alli € I, then x = 0;
(iii): for any x € X, we have x = Y, ;(x,e;)e;;
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(w): for any x € X, we have ||z[|* =3,/ [(z,e)|*.

In this case, the expression of each element x € X in Part (iii) is unique.

Note : there are only countable many (x,e;) # 0 by Corollary 13.4, so the sums in (iii) and (iv)
are convergent by Proposition 13.6.

Proposition 13.8. Let X be a Hilbert space. Then

(i) : X processes an orthonormal base.
(11) : If {e;}ier and {f;};jcs both are the orthonormal bases for X, then I and J have the same
cardinality. In this case, the cardinality |I| of I is called the orthonormal dimension of X.

Proof. Part (i) follows from Zorn’s Lemma at once.

For part (ii), if the cardinality |I| is finite, then the assertion is clear since |I| = dim X (vector
space dimension) in this case.

Now assume that |I| is infinite, for each e;, put Je, :== {j € J : (s, f;) # 0}. Note that since {e; }ier
is maximal, Proposition 13.7 implies that we have

{#i}ies € Jer-
el
Notice that J., is countable for each e; by using Proposition 13.4. On the other hand, we have
IN| < |I] because |I| is infinite and thus |[N x I| = |I|. Then we have

T <> el =D IN| =N x I| = 1].

iel iel
From symmetry argument, we also have |I| < |J|. O

Remark 13.9. Recall that a vector space dimension of X is defined by the cardinality of a maximal
linearly independent set in X.

Notice that if X is finite dimensional, then the orthonormal dimension is the same as the vector
space dimension.

Also, the vector space dimension is larger than the orthornormal dimension in general since every
orthogonal set must be linearly independent.

We say that two Hilbert spaces X and Y are said to be isomorphic if there is linear isomorphism
U from X onto Y such that (Uz,Uz’) = (z,2') for all z,2’ € X. In this case U is called a unitary
operator.

Theorem 13.10. Two Hilbert spaces are isomorphic if and only if they have the same orthonornmal
dimension.

Proof. The converse part (<) is clear.

Now for the (=) part, let X and Y be isomorphic Hilbert spaces. Let U : X — Y be a unitary.
Note that if {e;};cs is an orthonormal base of X, then {Ue;};cs is also an orthonormal base of Y.
Thus the necessary part follows from Proposition 13.8 at once. ]

Corollary 13.11. Every separable Hilbert space is isomorphic to £ or C" for some n.

Proof. Let X be a separable Hilbert space.

If dim X < oo, then it is clear that X is isomorphic to C" for n = dim X.

Now suppose that dim X = oo and its orthonormal dimension is larger than |N|, that is X has an
orthonormal base {fi}ic; with |I| > |N|. Note that since || f; — f;|| = V2 for all 4, j € I with i # j.
This implies that B(f;,1/4) N B(fj,1/4) =0 for i # j.
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On the other hand, if we let D be a countable dense subset of X, then B(f;,1/4) N D # () for all
i € 1. So for each i € I, we can pick up an element z; € D N B(f;,1/4). Therefore, one can define
an injection from I into D. It is absurd to the countability of D. g

Example 13.12. The followings are important classes of Hilbert spaces.

(i)

(i)

(iif)

C™ is a n-dimensional Hilbert space. In this case , the inner product is given by (z,w) :=
Y opeq 2kWy, for z = (21, ..., 2z,) and (wy, ..., wy) in C".

The natural basis {ey, ..., e, } forms an orthonormal basis for C".

¢? is a separable Hilbert space of infinite dimension whose inner product is given by (z,y) :=

S>>0 z(n)y(n) for z,y € (2.
If we put e, (n) = 1 and e, (k) = 0 for k # n, then {e,} is an orthonormal basis for ¢2.
Let T :={z € C: |z| = 1}. For each f € C(T) (the space of all complex-valued continuous
functions defined on T), the integral of f is defined by

2 1 2

/T F(2)dz ::% [ retar = 5

An inner product on C(T) is given by

(f.9) = /T f(2)g()dz

for each f,g € C(T). We write || - ||2 for the norm induced by this inner product.

The Hilbert space L*(T) is defined by the completion of C(T) under the norm || - 2.

Now for each n € Z, put f,(z) = 2". We claim that {f, : n =0,£1,£2,....} is an orthonor-
mal basis for L?(T).

In fact, by using the Euler Formula: e’
{fn :n € Z} is orthonormal.

It remains to show that the family {f,} is maximal. By Proposition 13.7, it needs to show
that if (g, f,) = 0 for all n € Z, then g = 0 in L?(T). for showing this, we have to make
use the known fact that every element in L?(T) can be approximated by the polynomial
functions of z and z on T in || - ||2-norm due to the the Stone- Weierstrass Theorem:

it K2
; Ref(e )dt+27r

/% Imf(e)dt.
0

0 = cos@ + isinf for § € R, we see that the family

For a compact metric space E, suppose that a complexr subalgebra A of C(E) satisfies the
conditions: (i): the conjugate f € A whenever f € A, (i): for every pair z,2' € E, there is
[ € A such that f(z) # f(Z') and (iii): A contains the constant one function. Then A is
dense in C(E) with respect to the sup-norm.

Thus, the algebra of all polynomials functions of z and z on T is dense in C(T). From
this we can find a sequence of polynomials (p,(z,z)) such that ||g — ppll2 — 0 as n — 0.
Since (g, fn) = 0 for all n, we see that (g,p,) = 0 for all n. Therefore, we have

lgll3 = lim(g, pn) = 0.
The proof is finished.

14. GEOMETRY OF HILBERT SPACE II

In this section, let X always denote a complex Hilbert space.

Proposition 14.1. If D is a closed convex subset of X, then there is a unique element z € D such

that

||z|| = inf{||z| : = € D}.
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Consequently, for any element u € X, there is a unique element w € D such that
|lu — w|| = d(u, D) := inf{||u — z|| : z € D}.

Proof. We first claim the existence of such z.
Let d := inf{||z| : € D}. Then there is a sequence (z,,) in D such that ||z, || — d. Notice that
(z,,) is a Cauchy sequence. In fact, the Parallelogram Law implies that

Tm — Tn T + Tn

|2 )

as m,n — 0o, where the last inequality holds because D is convex and hence %(:cm +x,) € D. Let
z = lim, x,,. Then ||z|| = d and z € D because D is closed.

For the uniqueness, let z,z’ € D such that ||z|| = ||2/|| = d. Thanks to the Parallelogram Law
again, we have

1 1 1 1
I = Slemll* + Sllzal* — | P < Sl + Sllzall* - d* — 0

z—2

z+72
. 212

u g

Therefore z = 2/.
The last assertion follows by considering the closed convex set u—D := {u—=z : x € D} immediately.
O

1 1 1 1
2= S0 + 5102 - | < Sllzl + 11012 - & = o,

Proposition 14.2. Suppose that M is a closed subspace. Let u € X and w € M. Then the
followings are equivalent:

(i): [lu —w|| = d(u, M);

(ii): w—w L M, that is (u —w,x) =0 for all x € M.
Consequently, for each element uw € X, there is a unique element w € M such that uw —w 1L M.
Proof. Let d := d(u, M).
For proving (i) = (i7), fix an element « € M. Then for any ¢ > 0, note that since w + tz € M, we
have

d? < |lu—w —tz]|? = |u — w||? + |[tz]|* — 2Re(u — w, tz) = d* + |[tz||* — 2Re(u — w, tz).
This implies that
(14.1) 2Re(u — w, x) < t||z|?
for all ¢ > 0 and for all z € M. So by considering —z in Eq.14.1, we obtain
2|Re(u — w, )| < t|z|?.

for all ¢ > 0. This implies that Re(u —w, x) = 0 for all x € M. Similarly, putting +iz into Eq.14.1,
we have Im(u — w,z) = 0. So (it) follows.
For (ii) = (i), we need to show that ||u—w]||?> < ||u—z||? for all z € M. Note that since u—w 1 M
and w € M, we have u —w 1 w — x for all x € M. This gives

lu = 2]* = [[(u — w) + (w = 2)[I* = Ju — w|]* + Jw = 2|* > lu—w|*.

Part (i) follows.
The last statement is obtained by Proposition 14.1 immediately. O

Theorem 14.3. Let M be a closed subspace. Put
Mt ={zeX:zl1lM}.

Then M~ is a closed subspace and we have X = M @& M~+. Consequently, forz € X ifx =u & v
foru € M and v € M*, then dist(x, M) = ||z — ul.
In this case, M+ is called the orthogonal complement of M.
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Proof. Tt is clear that M~ is a closed subspace and MMM+ = (0). It remains to show X = M+M~.
Let uw € X. Then by Proposition 14.2, we can find an element w € M such that v« —w 1. M. Thus
u—w€ Mt and u =w+ (u—w).

The last assertion follows from Proposition 14.2 at once. The proof is finished. O

Corollary 14.4. Let M be a closed subspace of X. Then M C X if and only if there is a non-zero
element z € X such that z 1. M.

Proof. 1t is clear from Theorem 14.3. U

Corollary 14.5. If M is a closed subspace of X, then M+ = M.

Proof. Tt is clear that M C M*+ by the definition of M++. Then M can be viewed as a closed
subspace of the Hilbert space M++. So, Now if M C M=+, then there exists a non-zero element
z € M+ so that z L M by Corollary 14.4 and hence, z € M. This implies that z | z and hence,
z = 0 which leads to a contradiction. ]

Theorem 14.6. Riesz Representation Theorem : For each f € X*, then there is a unique
element vy € X such that

f(x) = (z,v5)
for all x € X and we have || f|| = |lvs]|.
Furthermore, if (e;)ier is an orthonormal base of X, then vy =", f(e;)e;.

Proof. We first prove the uniqueness of vy. If z € X also satisfies the condition: f(z) = (z,2) for
all x € X. This implies that (z,z —vy) =0 for all z € X. So z — vy = 0.
Now for proving the existence of vy, it suffices to show the case | f|| = 1. Then ker f is a closed
proper subspace. Then by the orthogonal decomposition again, we have

X =ker f @ (ker f)*.
Since f # 0, we have (ker f)* is linear isomorphic to C. Also note that the restriction of f
on (ker f)1 is of norm one. Hence there is an element vy € (ker f)1 with |v|| = 1 such that
fs) = [ fler pyr |l = 1 and (ker f)*+ = Cuy. So for each element € X, we have z = 2 + av; for
some z € ker f and o € C. Then f(z) = af (vf) = a = (z,vy) for all z € X.
Concerning about the last assertion, if we put vy = Zaiei, then f(e;) = (ej,vf) = @ for all

1€l
j € I. The proof is finished. O

Example 14.7. Consider the Hilbert space H := L*(T) (see Example 13.12). Define o € H* by
o(f) := [3 f(2)dz. Using Proposition 14.2, for each element g € H, there is an element h € ker ¢
such that ||g—h| = dist(g,ker p). Then h = g— ([ hdz)1 where 1 denotes the constant-one function
on T. In fact, consider the orthogonal decomposition H = ker ¢ & (ker p)*. Note that p(g) = (g,1)
for all g € H. So, for each g € H, we have g = h @ al. From this, we see that « = (g,1). Thus,
h=g— () hdz)1.

Corollary 14.8. With the notation as in Theorem 14.6, Define the map
(14.2) O:fe X" —vreX, ie, f(y) = (z,2(f))

forally e X and f € X*.
And if we define (f,g)x~ = (vg,vf)x for f,g € X*. Then (X*,(-,-)x=) becomes a Hilbert space.
Moreover, ® is an anti-unitary operator from X* onto X, that is ® satisfies the conditions:

®(af + Bg) =a®(f) + BP(9) and (2f,Pg)x = (g, f)x~
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forall f,g€ X* and o, € C.
Furthermore, if we define J :x € X — f, € X*, where f.(y) := (y,x), then J is the inverse of @,
and hence, J is an isometric conjugate linear isomorphism.

Proof. The result follows immediately from the observation that vy, = vy + vy and v,y = Qv for
all f € X* and a € C.
The last assertion is clearly obtained by the Eq.14.2 above. O

Corollary 14.9. Fvery Hilbert space is reflexive.

Proof. Using the notation as in the Riesz Representation Theorem 14.6, let X be a Hilbert space.
and Q : X — X™ the canonical isometry. Let ¢ € X**. To apply the Riesz Theorem on the dual
space X, there exists an element zj € X* such that

for all f € X*. By using Corollary 14.8, there is an element zo € X such that zo = vyx and thus,
we have

O(f) = (f,20)x+ = (20, v5)x = f(0)

for all f € X*. Therefore, 1) = Q(xg) and so, X is reflexive.
The proof is finished. O]

Theorem 14.10. Every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Proof. Let (x,) be a bounded sequence in a Hilbert space X and M be the closed subspace of X
spanned by {z,, : m = 1,2...}. Then M is a separable Hilbert space.

Method I : Define a map by jy : @ € M — jy(z) = (-,x) € M*. Then (jr(xy,)) is a bounded
sequence in M*. By Banach’s result, Proposition 7.9, (jas(x,)) has a w*-convergent subsequence

(v (2ny)). Put ju(zn,) AN f € M*, that is jy(zp,)(2) = f(z) for all z € M. The Riesz
Representation will assure that there is a unique element m € M such that jy/(m) = f. So we
have (z,zy,) — (2,m) for all z € M. In particular, if we consider the orthogonal decomposition
X = M®MH*, then (z,2,,) — (x,m) for all z € X and thus (z,,,2) — (m,z) for all z € X. Then
T, — m weakly in X by using the Riesz Representation Theorem again.

Method II : We first note that since M is a separable Hilbert space, the second dual M™** is also
separable by the reflexivity of M. So the dual space M* is also separable (see Proposition5.7). Let
Q : M — M™ be the natural canonical mapping. To apply the Banach’s result Proposition 7.9
for X*, then Q(z,) has a w*-convergent subsequence, says Q(zy, ). This gives an element m € M
such that Q(m) = w*-limy Q(z,,) because M is reflexive. So we have f(z,,) = Q(zn,)(f) —
Q(m)(f) = f(m) for all f € M*. Using the same argument as in Method I again, x,, weakly
converges to m as desired. O

Remark 14.11. [t is well known that we have the following Theorem due to R. C. James (the
proof is highly non-trivial):

A normed space X is reflexive if and only if every bounded sequence in X has a weakly convergent
subsequence.

Theorem 14.10 can be obtained by the James’s Theorem directly. However, Theorem 14.10 gives a
stmple proof in the Hilbert spaces case.
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15. OPERATORS ON A HILBERT SPACE

Throughout this section, all spaces are complex Hilbert spaces. Let B(X,Y’) denote the space
of all bounded linear operators from X into Y. If X =Y, write B(X) for B(X, X).
Let T'e€ B(X,Y). We will make use the following simple observation:

(15.1) (Tz,y) =0forall z € X;yeY ifandonlyif T =0.

Therefore, the elements in B(X,Y) are uniquely determined by the Eq.15.1, that is, 7' = S in
B(X,Y) if and only if (Tx,y) = (Sz,y) forall x € X and y € Y.

Remark 15.1. For Hilbert spaces Hy and Hsy, we consider their direct sum H := Hy1 @ Hsy. If we
define the inner product on H by

(71 @ 2,51 D y2) = (w1, 91) 1y + (22, 92) 1,
for x1 ® xo and y1 ® y2 in H, then H becomes a Hilbert space. Now for each T € B(Hy, Hs), we
can define an element T € B(H) by T'(x1 ® x2) := 0@ Tx1. So, the space B(Hy, Hs) can be viewed

as a closed subspace of B(H). Thus, we can consider the case of Hy = Ha for studying the space
B(Hy, Hj).

Proposition 15.2. Let T : X — X be a linear operator. Then we have
(i): T =0 if and only if (Txz,x) =0 for all x € X. Consequently, for T,S € B(X), T =S if
and only if (Txz,x) = (Sz,x) for allx € X.
(ii): T is bounded if and only if sup{|(Tz,y)| : =,y € X with ||z| = ||y|| = 1} is finite. In this
case, we have ||T|| = sup{|(Tz,y)| : x,y € X with ||z| = ||y|| = 1}.

Proof. Tt is clear that the necessary part in Part (i). Now we are going to the sufficient part in
Part (¢), that is we assume that (T'z,2) = 0 for all x € X. This implies that we have

0= (T(x+1iy),z+1iy) = (Tx,z) +i(Ty,z) —i(Tx,y) + (Tiy,iy) = i(Ty,x) —i(Tx,y).
So we have (T'y,xz)— (Tz,y) = 0 for all z,y € X. In particular, if we replace y by iy in the equation,
then we get i(Ty,z) — i(Txz,y) = 0 and hence we have (Ty,x) + (Tz,y) = 0. Therefore we have
(Tz,y) =0.
For part (i7) : Let a = sup{|(Tz,y)| : z,y € X with ||z|| = ||y|| = 1}. It suffices to show ||T|| = a.
It is clear that we have ||T'|| > a. It needs to show ||T| < a.
In fact, for each z € X with ||z|| = 1, if Tx # 0, then we take y = Tz/||Tz||. From this, we see
that | Tz| = |(Tz,y)| < a. This implies that ||T|| < a. The proof is finished. O

Proposition 15.3. Let T € B(X). Then there is a unique element T* in B(X) such that
(15.2) (T, y) = (2, T"y)
In this case, T is called the adjoint operator of T'.

Proof. We first show the uniqueness. Suppose that there are S1,S2 in B(X) which satisfy the
Eq.15.2. Then (z,S1y) = (x, Soy) for all x,y € X. Eq.15.1 implies that S; = Ss.

Finally, we prove the existence. Note that if we fix an element y € X, define the map f,(z) :=
(Txz,y) for all z € X. Then f, € X*. The Riesz Representation Theorem implies that there is a
unique element y* € X such that (Tz,y) = (z,y*) for all z € X and ||fy|| = ||y*||. On the other
hand, we have

[fy@)] = [Tz, y)| < I T[]]Iyl
for all z,y € X and thus || fy|| < || T|||y]|. If we put T*(y) := y*, then T™ satisfies the Eq.15.2.
Also, we have ||T*y|| = |ly*[| = £yl < IT||ly]l for all y € X. So T* € B(X) with |T*| < ||T
indeed. Hence T™ is as desired. 0
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Remark 15.4. Let S,T : X — X be linear operators (without assuming to be bounded). If they
satisfy the Eq.15.2 above, i.e.,

(Tz,y) = (x, Sy)
for all z,y € X. Using the Closed Graph Theorem, one can show that S and T" both are automat-
ically bounded.
In fact, let (z,) be a sequence in X such that lim z,, = x and lim Sz,, = y for some z,y € X. Now
for any z € X, we have
(z,82) = (Tz,z) = lim(Tz,z,) = lim(z, Sx,,) = (2,y).

Thus Sx = y and hence S is bounded by the Closed Graph Theorem.
Similarly, we can also see that T' is bounded.

Remark 15.5. Let T' € B(X). Let T" : X* — X* be the transpose of T which is defined by
TUf) = foT € X* for f € X* (see Proposition 5.9). Then we have the following commutative
diagram (Check!)

where Jx : X — X* is the anti-unitary given by the Riesz Representation Theorem (see Corollary
14.8).

Proposition 15.6. Let T, S € B(X). Then we have
(1): T* € B(X) and | T| = ||T].
(ii): The map T € B(X) — T* € B(X) is an isometric conjugate anti-isomorphism, that is,

(aT + BS)* =aT* + BS* forall o, €C; and (TS)*=S*T"
(iii): | T*T| = |IT|]>.
Proof. For Part (i), in the proof of Proposition 15.3, we have shown that ||7*|| < ||T'||. And the
reverse inequality clearly follows from T =T.
The Part (ii) follows from the adjoint operators are uniquely determined by the Eq.15.2 above.
For Part (iii), we always have || T*T|| < ||T*|||T|| = ||T||?>. For the reverse inequality, let x € Bx.
Then
\Te|? = (T, Ta) = (T*Tx, ) < |T*Tl al| < 7T,
Therefore, we have ||T||? < ||T*T|. O

Example 15.7. If X = C" and D = (a;j)nxn an n X n matriz, then D* = (@j;)nxn- In fact, notice
that

a,ji = (Dei,ej) = (ei,D*ej) = (D*ej,ei).
So if we put D* = (dij)nxn, then dij = (D*ej, e;) = aj;.

Example 15.8. Let (>(N) := {z : N — C: Y2 |z(i)|* < oo}. And put (z,y) := Zx
1=0

Define the operator D € B(#2(N)) (called the unilateral shift) by
Dz(i) =xz(i—1)
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for i € N and where we set x(—1) := 0, that is D(z(0),z(1),...) = (0,2(0), z(1),....).
Then D is an isometry and the adjoint operator D* is given by
D*z(i) == z(i+ 1)

fori=0,1,.., that is D*(x(0),z(1),...) = (x(1),z(2), ....).
Indeed one can directly check that

[e.9]

(Dz,y) =Y a(i—1y@) =Y 2(j)y(j +1) = (z, D*y).
i=0 Jj=0

Note that D* is NOT an isometry.

Example 15.9. Let (*°(N) = {z : N — C : sup;>¢ |z(i)| < oo} and ||z]|ec := sup;>q |2(i)|. For
each x € >, define M, € B({*(N)) by
My(§) == -¢
for & € 2(N), where (x-€)(i) = x(i)¢(i); i e N.
Then ||Mz|| = ||z||lco and M} = Mz, where T(i) := z(1).

Definition 15.10. Let T' € B(X) and let I be the identity operator on X. T is said to be
(i) : selfadjoint if T* =T
(ii) : normal if T*T = TT*;
(iii) : unitary if T*T =TT* = I.

Proposition 15.11. We have

(i) : Let T : X — X be a linear operator. T is selfadjoint if and only if
(15.3) (Tz,y) = (x,Ty) foralx,ye X.

(ii) : T is normal if and only if |Tz|| = ||T*z| for all xz € X.
Proof. The necessary part of Part (i) is clear.
Now suppose that the Eq.15.3 holds, it needs to show that T is bounded. Indeed, it follows from
Remark15.4 at once.
For Part (i7), note that by Proposition 15.2, T is normal if and only if (T#T'z,z) = (T'T*z,x). So,
Part (ii) follows from that

|Tz||> = (Tz,Tx) = (T*Tz,z) = (TT*z,2) = (T*z, T*z) = | T*z|?

for all z € X. 0

Proposition 15.12. Let T € B(H). We have the following assertions.
(i) : T is selfadjoint if and only if (Tz,z) € R for all x € H.
(i) : If T is selfadjoint, then ||T| = sup{|(Tz,z)| : x € H with ||z| = 1}.
Proof. Part (i) is clearly follows from Proposition15.2.
For Part (i7), if we let a = sup{|(T'z,z)| : © € H with |z|| = 1}, then it is clear that a < ||T']|. We
are now going to show the reverse inequality. Since T is selfadjoint, one can directly check that
(T(.%' + y)vx + y) - (T(x - y),x - y) - 4R6(Tx7y)

for all z,y € H. Thus if z,y € H with ||z|| = ||y|| = 1 and (Tz,y) € R, then by using the
Parallelogram Law, we have

a a
(15.4) (Tz,y)l < Sl +yl* + llz = ol*) = S (ll=]* + ly]*) = a.
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Now for z,y € H with ||z|| = ||y|| = 1, by considering the polar form of (Tz,y) = re'?, the Eq.15.4
gives
(Tz,y)| = [(Tz,ey)| < a.

Since |T'| = sup [(Tw,y)|, we have ||T|| < a as desired. The proof is finished. O
llzll=llyll=1

Proposition 15.13. Let T' € B(X). Then we have
ker T = (imT*)t  and (ker T)* =imT*
where im1" denotes the image of T.
Proof. The first equality is clearly follows from x € ker T if and only if 0 = (T'z, 2) = (z,T*z) for
all z € X.

On the other hand, it is clear that we have M+ = M for any subspace M of X. This together
with the first equality and Corollary14.5 will yield the second equality at once. O

Proposition 15.14. Let X be a Hilbert space. Let M and N be the closed subspaces of X such
that

X=M&N  ............ (*)

Let Q : X — X be the projection along the decomposition (x) with im @ = M (notice that QQ must
be bounded by Proposition 11.1). Then N = M+ (and hence (x) is the orthogonal decomposition
of X with respect to M) if and only if Q satisfies the conditions: Q* = Q and Q* = Q. And Q is
called the orthogonal projection (or projection for simply) with respect to M.

Proof. Now if N = M~ then for v,y € M and z,2 € N, we have
Qy+2),y +2)=(y,y) =y +20QWH +2)).

So Q* = Q.
The converse of the last statement follows from Proposition 15.13 at once because ker ) = N and
im@Q = M.
The proof is complete. O]

Proposition 15.15. When X is a Hilbert space, we put M the set of all closed subspaces of X and
P the set of all orthogonal projections on X. Now for each M € M, let Py; be the corresponding
projection with respect to the orthogonal decomposition X = M @ M~+. Then there is an one-one
correspondence between M and P which is defined by

MeM— Py eP.

Furthermore, if M, N € M, then we have

(i) : M C N if and only if PyyPy = PyPy = Py
(ii) : M LN if and only if PyyPy = PyPy = 0.

Proof. Tt first follows from Proposition 15.14 that Py; € P.

Indeed the inverse of the correspondence is given by the following. If we let Q € P and M =
Q(X), then M is closed because M = ker(I — @) and I — @ is bounded. Also it is clear that
X =Q(X)® (I — Q)X with kerQ = M*. Hence M is the corresponding closed subspace of X,
that is M € M and Py = @ as desired.

For the final assertion, Part (i) and (i7) follow immediately from the orthogonal decompositions
X = M®M~+ = NoN' and together with the clear facts that M C N if and only if N*- € M+. O
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16. SPECTRAL THEORY I

Definition 16.1. Let E be a normed space and let T € B(E). The spectrum of T, write o(T), is
defined by

o(T):={\ e C: T — X is not invertible in B(FE)}.

Remark 16.2. More precise, for a normed space E, an operator T € B(E) is said to be invertible
in B(E) if T is an linear isomorphism and the inverse T~ 1 is also bounded. However, if E is
complete, the Open Mapping Theorem assures that the inverse T~' is bounded automatically. So
if E is a Banach space and T € B(E), then X\ ¢ o(T) if and only if T — X := T — X is an linear
isomorphism. So X\ lies in the spectrum o(T) if and only if T — X is either not one-one or not
surjective.

In particular, if there is a non-zero element v € X such that Tv = v, then A\ € o(T) and X is
called an eigenvalue of T with eigenvector v.

We also write o,(T) for the set of all eigenvalue of T' and call 0,(T) the point spectrum.

Example 16.3. Let E = C" and T = (aij)nxn € Mn(C). Then X € o(T) if and only if X is an
eigenvalue of T and thus o(T) = o,(T).

Example 16.4. Let E = (coo(N), || - ||oc) (note that coo(N) is not a Banach space). Define the map
T: COO(N) — COO(N) by

for x € coo(N) and i € N.
Then T is bounded, in fact, ||Tz||c < ||Z||co for all x € coo(N).
On the other hand, we note that if A € C and x € coo(N), then

1
T— =(—— .
(T = Nalk) = (5 = Na(b)
From this we see that op(T) = {1,3,%,..}. And if X ¢ {1,4,%, ..}, then T — X is an linear
isomorphism and its inverse is given by
1
T —N)"ta(k) = (—— = A)'z(k).
(T =N all) = (g = N o lh)

So, (T — X\)~! is unbounded if X = 0 and thus 0 € o(T).
On the other hand, if A ¢ {0, 1, %, %, .}, then (T — X\)~! is bounded. In fact, if \ = a +ib # 0, for

—al* + [b]* > 0 because A ¢ {1, 2, 1,..}. This gives

1
beR, th = mi
a, , then n mkm‘l—i—k

1
T-N"Y =sup|(-—— - N <! <.
I =27 = supl g =7 <

It can now be concluded that o(T) = {1,%,%,..} U{0}.

Proposition 16.5. Let E be a Banach space and T € B(FE). Then
(i) : I —T is invertible in B(E) whenever ||T| < 1.
(i) : If [\ > ||T||, then XA ¢ o(T).
(iii) : o(T) is a compact subset of C.
(i) : If we let GL(E) the set of all invertible elements in B(E), then GL(E) is an open subset
of B(E) with respect to the || - ||-topology.
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Proof. Notice that since B(FE) is complete, Part (i) clearly follows from the following equality
immediately:

I-TYI+T+T?+---- +TNY=1-1TN
for all N € N.
For Part (ii), if |A| > ||T]|, then by Part (i) , we see that I — 1T is invertible and so is AJ — T
This implies A ¢ o(T).
For Part (iii), since o(T') is bounded by Part (i7), it needs to show that o(7') is closed.
Let ¢ € C\ o(T). It needs to find r > 0 such that u ¢ o(T") as |u — ¢| < r. Note that since T'— ¢ is
invertible, then for 1 € C, we have T—pu = (T'—c)—(u—c) = (T —c)(I— (u—c)(T—¢)~1). Therefore,

1

if |(u—c)(T —c)™Y)|| < 1, then T — p is invertible by Part (7). So if we take 0 < r <

then r is as desired, that is, B(c,7) C C\ o(T"). Hence o(T) is closed.

For the last assertion, let T' € GL(E). Notice that for any S € B(F), we have S =S - T+ T =
T(1—-TYT - S)). So, if 1 — T7Y(T — 9) is invertible, then so is S. On the other hand, by
using Part (i), if [|T — S| < 1/|T!||, then 1 — T=1(T — S) is invertible. Therefore we have
B(T, ﬁ) C GL(E).

The proof is finished. O

(T =)~

Corollary 16.6. If U is a unitary operator on a Hilbert space X, then o(U) C{A € C: |\ =1}.

Proof. Since ||U|| = 1, we have o(U) C {\ € C: || <1} by Proposition 16.5(7).
Now if |A| < 1, then ||[AU*|| < 1. By using Proposition 16.5 again, we have I — AU* is invertible.
This implies that U — A = U(I — AU™) is also invertible and thus A ¢ o(U). O

Example 16.7. Let E = (*(N) and D € B(E) be the right unilateral shift operator as in Examplel5.8.
Recall that Dx(k) := x(k — 1) for i € N and x(—1) := 0. Then 0,(D) =0 and (D) = {\ € C:
A < 1}
We first claim that op(D) = 0.
Suppose that A € C and x € ¢*(N) satisfy the equation Dx = A\z. Then by the definition of D, we
have

a(k—1) = dx(k) oo (%)
for all k € N,
If X\ # 0, then we have z(k) = \~tzp_q for all i € N. Since x(—1) = 0, this forces x(k) = 0 for all
i, that is * = 0 in (*(N).
On the other hand if A = 0, the Eq.(x) gives x(k — 1) =0 for all k and so x = 0 again.
Therefore o,(D) = (.
Finally, we are going to show o(D) ={\ € C: |\ <1}.
Note that since D is an isometry, ||D|| = 1. Proposition 16.5 tells us that

(D) C{AeC: [N <1}

Notice that since op(D) is empty, it suffices to show that D — pu is not surjective for all p € C with
lul <1

Now suppose that there is A € C with |A| <1 such that D — X is surjective.

We consider the case when |\ =1 first.

Let e; = (1,0,0,...) € (?(N). Then by the assumption, there is x € {*>(N) such that (D — \)x = e;
and thus Dz = Ax + e1. This implies that

x(k — 1) = Dz(k) = \x(k) + e1(k)

for all k € N. From this we have 2(0) = -\~ and x(k) = —A"*2(0) for all k > 1 because since
e1(0) =1 and e (k) = 0 for all k > 1. Also since |\| = 1, it turns out that |x(0)| = |z(k)| for all
k>1. Asz € (?(N), this forces x = 0. However, it is absurd because Dx = \x + e7.
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Now we consider the case when |\ < 1.
Notice that by Proposition 15.13, we have
L
)

im(D — \) = ker(D — \)* = ker(D* — \).

Thus if D — X is surjective, we have ker(D* — X) = (0) and hence X ¢ o,(D*).
Notice that the adjoint D* of D is given by the left shift operator, that is,

Dix(k) =a(k+1) oo ()

for all k € N.
Now when D*x = px for some u € C and x € (*(N), by using Eq.(x*), which is equivalent to saying
that

z(k+1) = px(k)

for all k € N. So as @ = [Al <1, if we set 2(0) =1 and z(k +1) = ka(O) for all k > 1, then
z € (*(N) and D*x = Az. Hence \ € 0,(D*) which leads to a contradiction.
The proof is finished.

17. SPECTRAL THEORY II

Throughout this section, let H be a complex Hilbert space.

Lemma 17.1. Let T € B(H) be a normal operator (recall that T*T = TT*). Then T is invertible
in B(H) if and only if there is ¢ > 0 such that ||Tx| > c||z|| for all z € H.

Proof. The necessary part is clear.

Now we are going to show the converse. We first to show the case when T is selfadjoint. It is clear
that T is injective from the assumption. So by the Open Mapping Theorem, it remains to show
that T is surjective.

In fact since ker T = smT*~ and T = T*, we see that the image of T' is dense in H.

Now if y € H, then there is a sequence (z,) in H such that Tz, — y. So (T'z,) is a Cauchy
sequence. From this and the assumption give us that (x,) is also a Cauchy sequence. If z,
converges to x € H, then y = T'z. Therefore the assertion is true when T is selfadjoint.

Now if T is normal, then we have ||T*z|| = ||Tz|| > ¢||z|| for all x € H by Proposition 15.11(i7).
Therefore, we have ||T*Tz|| > c||Txz|| > c?||z|. Hence T*T still satisfies the assumption. Notice
that T*T is selfadjoint. So we can apply the previous case to know that T*T is invertible. This
implies that T is also invertible because T*T = TT™*.

The proof is finished. O

Definition 17.2. Let T € B(X). We say that T is positive, write T > 0, if (Tx,z) > 0 for all
e H.

Remark 17.3. It is clear that a positive operator is selfadjoint by Proposition 15.12 at once.
In particular, all projections are positive.

Proposition 17.4. Let T € B(H). We have

(i) : If T >0, then T + I is invertible.
(i) : If T is self-adjoint, then o(T) C R. In particular, when T > 0, we have o(T") C [0, c0).
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Proof. For Part (i), we assume that 7' > 0. This implies that
(7 + T)al* = |2]|* + | T2]* + 2(Tw, 2) > [|=]*

for all z € H. So the invertibility of I + T follows from Lemma 17.1.

For Part (ii), we first claim that T+ is invertible. Indeed, it follows from (T +4)*(T +1i) = T? + I
and Part (7) immediately.

Now if A = a +1ib € o(T) where a,b € R with b # 0, then T — X\ = —b(=2(T — a) + 1) is invertible
because 71 (T — a) is selfadjoint.

Finally we are going to show ¢(7") C [0,00) when 7" > 0. Notice that since o(7") C R, it suffices to
show that T — ¢ is invertible if ¢ < 0. Indeed, if ¢ < 0, then we see that T — ¢ = —c(I + (=LT)) is

invertible by the previous assertion because %IT > 0.
The proof is finished. O]

Remark 17.5. In Proposition 17.4, we have shown that if T is selfadjoint, then o(T) C R. How-
ever, the converse does not hold. For example, consider H = C? and

T:(8(1)>

Theorem 17.6. Let T € B(H) be a selfadjoint operator. Put

M(T) := sup (Tz,z) and m(T)= Hillrllfl(Tx,x).
llel=1 2=

For convenience, we also write M = M(T') and m = m(T) if there is no confusion.
Then we have

(1) Tl = max{|m|, [M]}.

(ii) : {m, M} C o(T).
(iii) : o(T) C [m, M].

Proof. Notice that m and M are defined because (T'x,x) is real for all x € H by Proposition 15.12
(73). Also Part(i) can be obtained by using Lemma 15.12 (i7) again.

For Part (i), we first claim that M € o(T) if T' > 0. Notice that 0 < m < M = ||T|| in this
case by Lemma 15.12. Then there is a sequence (z,,) in H with ||z,] = 1 for all n such that
(Txp,xy) — M =||T||. Then we have

1T = M)wal® = |TwalP + M|l — 2M Tty 20) < |TIP + M2 — 2M (T, ) - 0.

So by Lemma 17.1 we have shown that T'— M is not invertible and hence M € o(T) if T > 0.
Now for any selfadjoint operator T if we consider 1" —m, then T'—m > 0. Thus we have M —m =
M(T —m) € o(T —m) by the previous case. It is clear that o(T" — ¢) = o(T) — ¢ for all ¢ € C.
Therefore we have M € o(T') for any self-adjoint operator.

We are now claiming that m(T") € o(T). Notice that M(—T) = —m(T). So we have —m(T) €
o(=T). Tt is clear that o(—T) = —o(T). Then m(T) € o(T).

Finally, we are going to show o(T') C [m, M].

Indeed, since T'— m > 0, then by Proposition 17.4, we have o(T) — m = (T —m) C [0,00). This
gives o(T) C [m, o).

On the other hand, similarly, we consider M —T > 0. Then we get M —o(T) = o(M —T') C [0, c0).
This implies that o(T") C (—oo, M]. The proof is finished. O
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18. COMPACT OPERATORS ON A HILBERT SPACE

Throughout this section, let H be a complex Hilbert space.

Definition 18.1. A linear operator T : H — H is said to be compact if for every bounded sequence
(xn) in H, (T(xy,)) has a norm convergent subsequence.

Write K(H) for the set of all compact operators on H and K(H)s, for the set of all compact
selfadjoint operators.

Remark 18.2. Let U be the closed unit ball of H. It is clear that T is compact if and only if the
norm closure T'(U) is a compact subset of H. Thus if T is compact, then T is bounded automatically
because every compact set is bounded.

Also it is clear that if T has finite rank, that is dim imT < oo, then T must be compact because
every closed and bounded subset of a finite dimensional normed space is equivalent to it is compact.

Example 18.3. The identity operator I : H — H is compact if and only if dim H < co.

Example 18.4. Let H = (*({1,2...}). Define Tx(k) := % for k=1,2.... Then T is compact.

In fact, if we let (z,) be a bounded sequence in (%, then by the diagonal argument, we can find

a subsequence Y, := Txy, of Tz, such that lim y, (k) = y(k) exists for all k = 1,2... Let
m—0o0

L = sup,, [|[za|3. Since |ym(k)|* < k% for all m, k, we have y € £2. Now let ¢ > 0. Then one can
find a positive integer N such that ZkzN 4L/K* < e. So we have

S lym(k) (B < 32 35 <

k>N k>N
for all m. On the other hand, since lim y.,(k) = y(k) for all k, we can choose a positive integer
m—r0o0
M such that

N—1
D lym(k) —y(k)? <<
k=1

for all m > M. Finally, we have ||y, — y||3 < 2¢ for allm > M.

Theorem 18.5. Let T € B(H). Then T is compact if and only if T maps every weakly convergent
sequence in H to a norm convergent sequence.

Proof. We first assume that T € K(H). Let (z,) be a weakly convergent sequence in H. Since H
is reflexive, (z,) is bounded by the Uniform Boundedness Theorem. So we can find a subsequence
(x) of (xy) such that (T'z;) is norm convergent. Let y := lim; Tx;. We claim that y = lim, Tx,,.
Suppose not. Then by the compactness of T' again, we can find a subsequence (x;) of (z,) such
that T'z; converges to 3y’ with y # y/. Thus there is z € H such that (y,2) # (¢/,2). On the other
hand, if we let = be the weakly limit of (x,), then (x,,w) — (z,w) for all w € H. So we have

(y,2) = li?(ij,z) = li;rn(xj,T*(z)) = (x,T%z) = (Tx, 2).

Similarly, we also have (v/,z) = (T'z, z) and hence (y, z) = (v/, z) that contradicts to the choice of
z.

For the converse, let (x,) be a bounded sequence. Then by Theorem 14.10, (z,) has a weakly
convergent subsequence. Thus T'(z,) has a norm convergent subsequence by the assumption at
once. So T is compact. O
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Proposition 18.6. Let S,T € K(H). Then we have
(i) : aS+ BT € K(H) for all a, 5 € C;
(i) : TQ and QT € K(H) for all Q in B(H);
(i) : T* € K(H).
Moreover K(H) is normed closed in B(H).
Hence K(H) is a closed x-ideal of B(H).

Proof. (i) and (ii) are clear.
For property (iii), let (z,) be a bounded sequence. Then (7T%z,,) is also bounded. So TT*z,, has a
convergent subsequence 11"z, by the compactness of 7. Notice that we have

||T*xnk -1 Ty H2 (TT*(:an xnz)’ Loy — xnl)

for all ng,n;. This implies that (T*z,,) is a Cauchy sequence and thus is convergent since (zp, ) is
bounded.

Finally we are going to show K (H) is closed. Let (T,) be a sequence in K (H) such that T,,, — T in
norm. Let (x,,) be a bounded sequence in H. Then by the diagonal argument there is a subsequence
(@n,) of (x,) such that lilgn Ty, exists for all m. Now let € > 0. Since lim,, T,,, = T, there is a

positive integer N such that |7 — T || < e. On the other hand, there is a positive integer K such
that | Tnxn, — Tnoy, || < e for all k, k" > K. So we can now have

|70, — Ty | < T 20, — Tnaa || + 1T, — Tnwn |l + [T, — Tan, | < (L +1)e

for all k, k' > K where L := sup,, ||z,||. Thus limy T'z,, exists. It can now be concluded that
T € K(H). The proof is finished. O

Example 18.7. Let k(z,w) € C(T x T). Define an operator T : L*(T) — L*(T) by
TE(z) == / k(z,w)é(w)dw
T
for z € T and ¢ € L*(T). Then T is a compact operator.
Proof. 1t is clear that we have ||T|| < ||k|/cc. On the other hand, Stone-Weiestrass Theorem tells
us the polynomials of (z,Z;w,w) are || - |oo-dense in C(T x T). Therefore, by using Proposition
18.6, it suffices to show for the case k(z,w) = ZZJ‘YJ‘:1 aij(z, Z)w'w’ where a;;(z,%) is a polynomial
of (z,z) of degree N. From this, we have
N . .
TE(z) = Z a;j(z, ) / w'w’ §(w)dw
ij=1 T
for ¢ € L?(T). So, T(§) € span{z*z/ : 0 < i,j < N} which is of finite dimension for all ¢ € L?(T).
This implies that T" has finite dimensional range and thus, 7' is compact. The proof is finished. [

Corollary 18.8. Let T € K(H). If dim H = oo, then 0 € o(T).

Proof. Suppose that 0 ¢ o(T). Then T—! exists in B(H). Proposition 18.1 gives I = TT ! €
K (H). This implies dim H < oo. O

Proposition 18.9. Let T € K(H) and let ¢ € C with ¢ # 0. Then T — ¢ has a closed range.

1
Proof. Notice that since —T € K(H), so if we consider —T — I, we may assume that ¢ = 1.

Let S =T —1. Let z, be a sequence in H such that S:cn — x € H in norm. By considering
the orthogonal decomposition H = ker S @ (ker S)*, we write z,, = y, ® 2, for y, € ker S and
€ (ker S)*. We first claim that (z,) is bounded. Suppose not. By considering a subsequence
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Zn

€ (kerS)*.

of (z,), we may assume that we may assume that ||z,|| — oco. Put v, = ol
n

Since Sz, = Sz, — x, we have Sv,, — 0. On the other hand, since T' is compact, and (v,) is
bounded, by passing a subsequence of (v,), we may also assume that Tv, — w. Since S =T — I,
Vp = Tvy — Svy, — w—0=w € (ker S)*. Also from this we have Sv,, — Sw. On the other hand,
we have Sw = lim,, Sv,, = lim,, Tv, — lim, v, = w —w = 0. So w € ker S N (ker S)*. It follows
that w = 0. However, since v, — w and ||v,|| = 1 for all n. It leads to a contradiction. So (z,) is
bounded.

Finally we are going to show that x € imS. Now since (z,) is bounded, (T'z,) has a convergent
subsequence (T'zy, ). Let limy T'z,, = z. Then we have

Zny, = San, —Tap, = Stp, — T2, = — 2.

It follows that z = limy Sz, = limy Sz,, = S(x — 2) € imS. The proof is finished. 0

Theorem 18.10. Fredholm Alternative Theorem : Let T € K(H)s, and let 0 # X € C. Then
T — X is injective if and only if T — X is surjective.

Proof. Since T is selfadjoint, o(T) C R. So if A € C\ R, then 7' — X is invertible. So the result
holds automatically.

Now consider the case A € R\ {0}.

Then T — ) is also selfadjoint. From this and Proposition 15.13, we have ker(T —\) = (im(T — \))*
and (ker(T — \))*t = im(T — \).

So the proof is finished by using Proposition 18.9 immediately. U

Corollary 18.11. Let T € K(H)sq. Then we have o(T) \ {0} = o,(T) \ {0}. Consequently if
the values m(T) and M(T) which are defined in Theorem 17.6 are non-zero, then both are the
eigenvalues of T and |T|| = max |A].

€op(T)
Proof. Tt follows from the Fredholm Alternative Theorem at once. This together with Theorem
17.6 imply the last assertion. O

Example 18.12. Let T € B({?) be defined as in Ezample 18.4. We have shown that T € K({?)
and it is clear that T is selfadjoint. Then by Corollary 18.11 and Corollary 18.8, we see that
o(T)={0,1,4,4, ...}

Lemma 18.13. Let T € K(H)s, and let Ey :=={x € H : Tx = Az} for A € o(T) \ {0}, that is the
eigenspace of T corresponding to A. Then dim Ey < co.

Proof. Tt is because the restriction T'|E) is also a compact operator on E}y, then dim E) < oo for
all A € 0p(T') \ {0}. O

Theorem 18.14. Let T € K(H )sq. And suppose that dim H = co. Then o(T) = {1, Ag, ....}U{0},
where (A,) is a sequence of real numbers with Ny, # Ay, for m #n and |\,| | 0.

Proof. Note that since ||T'|| = max(|M(T")|, |m(T)|) and o(T") \ {0} = o,(T") \ {0}. So by Corollary
18.11, there is |A1| = )\ma()%) |A| = ||T"||. Since dim E), < oo, then Ei—l # 0. Then by considering
Eop

the restriction of 75 := T|E)%1 # 0, there is [A\o| = maxyc,, (7,) [A| = || T2[|. Notice that Ay € oy,(T)
and || < |A\| because ||To|| < ||T||. To repeat the same step, we can get a sequence ()\,) such
that (|\,|) is decreasing.

Now we claim that lim,, |\,| = 0.

Otherwise, there is 7 > 0 such that |\,| > n for all n. If we let v, € E), with ||v,|| = 1 for all n.
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Notice that since dim H = oo and dim E) < oo, for any A € 0,(T") \ {0}, there are infinite many
An’s. Then w, := ‘A—lﬂvn is a bounded sequence and ||Tw, — Twy,||?> = |[vn — vm||?> = 2 for m # n.
This is a contradiction since T is compact. So lim,, |A,| = 0.

Finally we need to check o(T) = {\1, A2, ...} U{0}.

In fact, let p € o,(T'). Since |A,| | 0, we can find a subsequence n; < np < .... of positive integers
such that

Al = oo = Ay > Angri]l = oo = M| > [Agt1] = oo = [Ana| > [Angr1| = -

Then we can choose N such that |A, 41| < |p| < |Any|- Notice that by the construction of \,’s
implies p = A; for some ny_1 +1 < j < ny.
The proof is finished. O

Theorem 18.15. Let T € K(H)s, and let (N\,) be given as in Theorem 18.14. For each \ €
op(T) \ {0}, put d(\) := dim E) < oco. Let {er; : i = 1,...,d(\)} be an orthonormal base for Ej.
Then we have the following orthogonal decomposition:

o
(18.1) H=%erT®EPE,.

n=1

Moreover B :={ex; : A € 0p(T) \ {0};i =1,..,d(N)} forms an orthonormal base of T'(H).

Also the series Z AP norm converges to T, where Py, is the orthogonal projection from H onto

n=1
d(An)
E,,, that is, P,(x) := Z (%, ex,.i)exn, i, for x € H.
=1

Proof. Put E = @, | E,. It is clear that kerT C E+. On the other hand, if the restriction
Ty := T|E+ # 0, then there exists an non-zero element u € o,(Tp) C 0,(T) because Ty € K(EL).
It is absurd because p # )\% for all i. So T|E+ = 0 and hence E+ C kerT. So we have the
decomposition (18.1). And from this we see that the family B forms an orthonormal base of
(ker T')*. On the other, we have (ker T)* = imT* = imT. Therefore, B is an orthonormal base for
T(H) as desired.

For the last assertion, it needs to show that the series > > | \,,P,, converges to T in norm. Notice
that if we put Sy, := > " | A, P, then by the decomposition (18.1), n%gnoo Smax =Tz forall x € H.

So it suffices to show that (S,,)5_, is a Cauchy sequence in B(H). In fact we have

m=1
[Amt1 P14 oo + AmtpPripll = [Ama]

for all m,p € N because E), LE), for m # n and |\,| is decreasing. This gives that (S,) is a
Cauchy sequence since |\,| | 0. The proof is finished. O

Corollary 18.16. T € K(H) if and only if T can be approximated by finite rank operators.

Proof. The sufficient condition follows from Proposition 18.6 at once.
Conversely, for a general compact operator 7', we can consider the decomposition:

1 1

T=-(T+T" (=(T —T7)).

ST+ T) + i (T = T"))
Notice that Re(T) = (T + T*) (call the real part of T) and Im(T) := (T — T*) (call the
imaginary part of T') both are the self-adjoint compact operators. From this, we see that the T' can
be approximated by finite ranks operators by using Theorem 18.15 at once. O
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